|
Математические заметки, 1969, том 6, выпуск 4, страницы 381–392
(Mi mzm6944)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
О групповых кольцах абелевых $p$-групп любой мощности
С. Д. Берманa, Т. Ж. Молловb a Харьковский государственный университет им. А. М. Горького
b Пловдивский высший педагогический институт (Болгария)
Аннотация:
Изучается задача о связи между абелевой $p$-группой $G$ произвольной мощности и ее групповым кольцом $LG$, где $L$ — кольцо с единицей ненулевой характеристики $n\equiv0(\mod p)$, $p$ — простое число. В частности, показывается, что групповое кольцо $LG$ с точностью до изоморфизма определяет базисную подгруппу группы $G$. Если редуцированная абелева $p$-группа $G$ имеет конечный тип и ее ульмовские факторы разлагаются в прямые произведения циклических групп, то групповое кольцо $LG$ определяет группу $G$ с точностью до изоморфизма. Библ. 5 назв.
Поступило: 17.06.1968
Образец цитирования:
С. Д. Берман, Т. Ж. Моллов, “О групповых кольцах абелевых $p$-групп любой мощности”, Матем. заметки, 6:4 (1969), 381–392; Math. Notes, 6:4 (1969), 686–692
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mzm6944 https://www.mathnet.ru/rus/mzm/v6/i4/p381
|
|