Математические заметки
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Правила для авторов
Лицензионный договор
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Матем. заметки:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Математические заметки, 1990, том 48, выпуск 1, страницы 47–55 (Mi mzm3282)  

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Фильтрованные произведения, прямые интегралы и выпуклый анализ числовых областей

Т. Ю. Кулиев

Институт математики и механики АН АзССР
Аннотация: Изучена числовая область элементов фильтрованных произведений банаховых алгебр с единицей и разложимых операторов в прямых интегралах гильбертовых пространств. В качестве метода доказательства использованы понятие идеального выпуклого множества и другие средства выпуклого анализа. Один из основных результатов.
Теорема 3.3.{\it Пусть $X$ – борелевское пространство, $\mu$ – стандартная мера на $X$, $\displaystyle A=\int_X^\oplus A(\xi)\,d\mu(\xi)$ – разложимый оператор в прямом интервале $\displaystyle H=\int_X^\oplus H(\xi)\,d\mu(\xi)$ гильбертовых пространств $H(\xi)$. Если числовая область $W(A(\xi))=\{(A(\xi)x,x);x\in H(\xi),\|x\|=1\}$ замкнута при почти всех $\xi\in X$, то}
$$ W(A)=\operatorname{essco}W(A(\xi))=\bigcap_{\mu(\Gamma)=0} \operatorname{co}\bigcup_{\xi\in X\setminus\Gamma}W(A(\xi)). $$

Библиогр. 11 назв.
Поступило: 04.01.1988
Исправленный вариант: 08.12.1988
Англоязычная версия:
Mathematical Notes, 1990, Volume 48, Issue 1, Pages 653–658
DOI: https://doi.org/10.1007/BF01164262
Реферативные базы данных:
УДК: 517.983
Образец цитирования: Т. Ю. Кулиев, “Фильтрованные произведения, прямые интегралы и выпуклый анализ числовых областей”, Матем. заметки, 48:1 (1990), 47–55; Math. Notes, 48:1 (1990), 653–658
Цитирование в формате AMSBIB
\RBibitem{Kul90}
\by Т.~Ю.~Кулиев
\paper Фильтрованные произведения, прямые интегралы и выпуклый анализ числовых областей
\jour Матем. заметки
\yr 1990
\vol 48
\issue 1
\pages 47--55
\mathnet{http://mi.mathnet.ru/mzm3282}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1081892}
\zmath{https://zbmath.org/?q=an:0718.47004|0708.47004}
\transl
\jour Math. Notes
\yr 1990
\vol 48
\issue 1
\pages 653--658
\crossref{https://doi.org/10.1007/BF01164262}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1990FJ67800007}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/mzm3282
  • https://www.mathnet.ru/rus/mzm/v48/i1/p47
  • Эта публикация цитируется в следующих 1 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Статистика просмотров:
    Страница аннотации:237
    PDF полного текста:72
    Первая страница:1
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024