|
Математические заметки, 1993, том 54, выпуск 2, страницы 19–25
(Mi mzm2384)
|
|
|
|
К вопросу о голоморфном продолжении функций с подмножеств границы Шилова круговых сильно звездных областей
О. В. Карепов Красноярский государственный университет
Аннотация:
Пусть $M$ – множество единственности для функций класса Харди $H^2(\mathcal D)$ на границе Шилова круговой сильно звездной области $\mathcal D\Subset{\mathbb C}^n$.
Получено эффективное описание тех функций $f_0\in L^2(M)$, которые являются следами на $M$ голоморфных функций класса Харди $H^2(\mathcal D)$. Указана формула, позволяющая восстанавливать функции $f \in H^2(\mathcal D)$ по их (радиальным предельным) значениям на $M$.
Библиография: 8 названий.
Поступило: 28.03.1991
Образец цитирования:
О. В. Карепов, “К вопросу о голоморфном продолжении функций с подмножеств границы Шилова круговых сильно звездных областей”, Матем. заметки, 54:2 (1993), 19–25; Math. Notes, 54:2 (1993), 780–784
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mzm2384 https://www.mathnet.ru/rus/mzm/v54/i2/p19
|
Статистика просмотров: |
Страница аннотации: | 318 | PDF полного текста: | 89 | Список литературы: | 60 | Первая страница: | 2 |
|