|
Математические заметки, 2023, том 114, выпуск 6, статья опубликована в англоязычной версии журнала
(Mi mzm14269)
|
|
|
|
Статьи, опубликованные в английской версии журнала
Discrete Generating Functions
S. S. Akhtamovaa, V. S. Alekseevb, A. P. Lyapinb a Lesosibirskij Pedagogical Institute—Branch of Siberian Federal University, Lesosibirsk, 662544, Russia
b School of Mathematics and Computer Science, Siberian Federal University, Krasnoyarsk, 660041, Russia
Аннотация:
The notion of a discrete generating function is defined. The definition uses the falling factorial instead of a power function. A functional equation for the discrete generating function of a solution to a linear difference equation with constant coefficients is found. For the discrete generating function of a solution to a linear difference equation with polynomial coefficients, the notion of $\mathrm{D}$-finiteness is introduced and an analog of Stanley's theorem is proved; namely, a condition for the $\mathrm{D}$-finiteness of the discrete generating function of a solution to such an equation is obtained.
Ключевые слова:
generating function, $\mathrm{D}$-finiteness, $p$-recursiveness, generating series, forward difference operator.
Поступило: 18.03.2023 Исправленный вариант: 29.04.2023
Образец цитирования:
S. S. Akhtamova, V. S. Alekseev, A. P. Lyapin, “Discrete Generating Functions”, Math. Notes, 114:6 (2023), 1087–1093
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mzm14269
|
|