Аннотация:
Продолжается исследование задачи синтеза схем для мультиплексорной
функции алгебры логики, которая часто является составной частью интегральных схем, а также используется в теоретических исследованиях. В стандартном базисе при условии, что элементы конъюнкции и дизъюнкции имеют глубину 1, а элемент отрицания – глубину 0, устанавливается точное значение глубины мультиплексорной функции от $n$ адресных переменных, равное $(n+2)$, если $10 \leqslant n \leqslant 19$. Тем самым, учитывая полученные ранее результаты, точное значение указанной глубины, равное $(n+2)$, установлено для всех натуральных $n$ таких, что $2 \leqslant n \leqslant 5$ и $n \geqslant 10$. При этом для $n=1$ данное значение равно 2, а для $6 \leqslant n \leqslant 9$ равно либо $(n+2)$, либо $(n+3)$. Аналогичные результаты справедливы также для базиса, состоящего из всех элементарных конъюнкций и элементарных дизъюнкций от двух переменных
Библиография: 13 названий.
Статья опубликована при финансовой поддержке Минобрнауки России в рамках реализации программы Московского центра фундаментальной и прикладной математики по соглашению № 075-15-2022-284.
Образец цитирования:
С. А. Ложкин, “О глубине мультиплексорной функции от “небольшого” числа адресных переменных”, Матем. заметки, 115:5 (2024), 741–748; Math. Notes, 115:5 (2024), 748–754