|
Математические заметки, 2022, том 112, выпуск 6, статья опубликована в англоязычной версии журнала
(Mi mzm13825)
|
|
|
|
Статьи, опубликованные в английской версии журнала
Results on the Existence and Multiplicity of Solutions for a Class
of Sublinear Degenerate Schrödinger Equations
in $\mathbb{R}^N$
Bui Kim My Faculty of Primary Education, Hanoi Pedagogical University 2,
Vinh Phuc, 283460 Vietnam
Аннотация:
In this paper, we study the existence
and multiplicity of nontrivial solutions of
the semilinear degenerate Schrödinger equation
$$
-\mathcal{L}u + V(x)u = f(x,u),\qquad x\in \mathbb{R}^N,\quad N\ge 3,
$$
where $V$
is a potential function defined on $\mathbb{R}^N$
and the nonlinearity $f$
is of
sublinear growth and satisfies some appropriate
conditions to be specified later.
Here $\mathcal{L}$
is an $X$-elliptic operator with respect to
a family $X = \{X_1, \ldots, X_m\}$ of locally
Lipschitz
continuous vector fields.
We apply the Ekeland variational
principle and a version of the fountain theorem
in the proofs of our main existence
results.
Our main results extend and improve some recent
ones in the literature.
Ключевые слова:
Sublinear Schrödinger equation,
$X$-elliptic operator, fountain theorem, variational
method.
Поступило: 03.06.2022 Исправленный вариант: 19.07.2022
Образец цитирования:
Bui Kim My, “Results on the Existence and Multiplicity of Solutions for a Class
of Sublinear Degenerate Schrödinger Equations
in $\mathbb{R}^N$”, Math. Notes, 112:6 (2022), 845–860
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mzm13825
|
Статистика просмотров: |
Страница аннотации: | 98 |
|