|
Математические заметки, 2022, том 112, выпуск 3, статья опубликована в англоязычной версии журнала
(Mi mzm13498)
|
|
|
|
Статьи, опубликованные в английской версии журнала
New Congruences for Broken $k$-Diamond and $k$ Dots Bracelet Partitions
Jing-Jun Yu School of Mathematical Sciences,
East China Normal University,
Shanghai,
200241 Peoples Republic of China
Аннотация:
Let $\Delta_k(n)$ denote the number of broken $k$-diamond partitions of $n$. Recently, Radu and Sellers studied the parity of the function $\Delta_3(n)$ and posed a conjecture. They proved that the conjecture is true for $\alpha =1$. Using the theory of modular forms, we give a new proof of the conjecture for $\alpha = 1$. Based on these results, we deduce some new infinite families of congruences modulo 2 for $\Delta_3(n)$. Similarly, we find several new congruences modulo 4 for $\Delta_3(n)$ and a new Ramanujan type congruence for $\Delta_2(n)$ modulo 2. Furthermore, let $\mathfrak{B}_k(n)$ denote the number of $k$ dots bracelet partitions of $n$. We also deduce some new Ramanujan type congruences for $\mathfrak{B}_{5^\alpha}(n)$ and $\mathfrak{B}_{7^\alpha}(n)$.
Ключевые слова:
broken
$k$-diamond partitions,
$k$
dots bracelet partitions, congruences, Hecke
eigenforms.
Поступило: 19.03.2022 Исправленный вариант: 13.05.2022
Образец цитирования:
Jing-Jun Yu, “New Congruences for Broken $k$-Diamond and $k$ Dots Bracelet Partitions”, Math. Notes, 112:3 (2022), 393–405
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mzm13498
|
|