|
Математические заметки, 2022, том 111, выпуск 2, статья опубликована в англоязычной версии журнала
(Mi mzm13434)
|
|
|
|
Статьи, опубликованные в английской версии журнала
The Divisibility Graph for F-Groups
D. Khoshnevis, Z. Mostaghim School of Mathematics, Iran University of Science and
Technology, Tehran, 1684613114 Iran
Аннотация:
A graph $D(G)$ is called the divisibility graph of $G$ if its vertex set is the set of noncentral conjugacy class sizes of $G$ and there is an edge between vertices $a$ and $b$ if and only if $a|b$ or $b|a$. We determine the number of connected components of the divisibility graph $D(G)$ when $G$ is an F-group. A finite group $G$ is called an F-group if for every $x, y \in G\setminus Z(G)$, $C_{G}(x)\leq C_{G}(y)$ implies $C_{G}(x)=C_{G}(y)$. We also prove that if the divisibility graph $D(G)$ in which $G$ is an F-group is a $k$-regular graph, then the divisibility graph $D(G)$ is a complete graph with $k+1$ vertices.
Ключевые слова:
conjugacy class, divisibility graph, F-group.
Поступило: 26.08.2020 Исправленный вариант: 26.07.2021
Образец цитирования:
D. Khoshnevis, Z. Mostaghim, “The Divisibility Graph for F-Groups”, Math. Notes, 111:2 (2022), 236–242
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mzm13434
|
|