|
Математические заметки, 2023, том 113, выпуск 4, статья опубликована в англоязычной версии журнала
(Mi mzm13403)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Статьи, опубликованные в английской версии журнала
Green's Function and Existence Results for Solutions of Semipositone Nonlinear Euler–Bernoulli Beam Equations with Neumann Boundary Conditions
W. Jingjing, G. Chenghua, X. He College of Mathematics and Statistics, Northwest Normal University
Аннотация:
In this paper, we are concerned with the existence and multiplicity of positive solutions of the boundary value
problem for the fourth-order semipositone nonlinear Euler–Bernoulli beam equation
$$
\begin{cases}
y^{(4)}(x)+(\eta+\zeta)y''(x)+\eta\zeta y(x)=\lambda f(x,y(x)),& x\in[0,1],\\
y'(0)=y'(1)=y'''(0)=y'''(1)=0,&
\end{cases}
$$
where $\eta$ and $\zeta$ are constants, $\lambda>0$ is a parameter, and $f\in C([0,1]\times \mathbb{R}^+,\mathbb{R})$
is a function satisfying $f(x,y)\geq-\mathcal{X}$ for some positive constant $\mathcal{X}$;
here $\mathbb{R}^+:=[0,\infty)$. The paper is concentrated on applications of
the Green's function of the above problem to the derivation of the existence and multiplicity
results for the positive solutions. One example is also given to demonstrate the results.
Ключевые слова:
semipositone, Euler–Bernoulli beam equations, Green's function, positive solutions,
Neumann boundary value problem.
Поступило: 30.12.2021
Образец цитирования:
W. Jingjing, G. Chenghua, X. He, “Green's Function and Existence Results for Solutions of Semipositone Nonlinear Euler–Bernoulli Beam Equations with Neumann Boundary Conditions”, Math. Notes, 113:4 (2023), 574–583
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mzm13403
|
|