|
Математические заметки, 2022, том 111, выпуск 2, статья опубликована в англоязычной версии журнала
(Mi mzm13227)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Статьи, опубликованные в английской версии журнала
Perfect Domination Polynomial of Homogeneous
Caterpillar Graphs and of Full Binary Trees
Temesgen Engida Yimer, J. Baskar Babujee Department of Mathematics, Anna University, MIT Campus,
Chennai, 600044 India
Аннотация:
Let $G=(V,E)$ be a simple graph of order $n$. A set $S \subseteq V(G)$ is a perfect dominating set of a graph $G$ if every vertex $v\in V(G)-S$ is adjacent to exactly one vertex in $S$. That is, every vertex outside $S$ has exactly one neighbor in $S$. Every graph $G$ has at least the trivial perfect dominating sets consisting of all vertices in $G$. The perfect domination number $\gamma_{pf} (G)$ is the minimal cardinality of dominating sets in $G$. Let $D_{pf} (G,i)$ be the family of perfect dominating sets for a graph $G$ with cardinality $i$ and $d_{pf} (G,i)= |D_{pf} (G,i)|$. The perfect domination polynomial of a graph $G$ of order $n$ is $$ D_{pf} (G,x)=\sum_{i=\gamma_{pf}(G)}^{n} d_{pf}(G,i)x^n, $$ where $d_{pf} (G,i)$ is the number of perfect dominating sets of $G$ of size $i$. In this paper, we studied the perfect domination polynomial $D_{pf} (G,x)$ of homogeneous caterpillar graphs and of full binary trees.
Ключевые слова:
perfect domination sets, perfect domination polynomial, homogeneous caterpillar graphs,
full binary tree, corona graph.
Поступило: 16.07.2021
Образец цитирования:
Temesgen Engida Yimer, J. Baskar Babujee, “Perfect Domination Polynomial of Homogeneous
Caterpillar Graphs and of Full Binary Trees”, Math. Notes, 111:2 (2022), 297–304
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mzm13227
|
|