|
Математические заметки, 2021, том 109, выпуск 6, статья опубликована в англоязычной версии журнала
(Mi mzm13170)
|
|
|
|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Статьи, опубликованные в английской версии журнала
Global Structure of Positive Solutions of Fourth-Order Problems
with Clamped Beam Boundary Conditions
Dongliang Yan, Ruyun Ma, Liping Wei Department of Mathematics, Northwest Normal
University, Lanzhou, 730070 China
Аннотация:
In this paper, we investigate the global structure of positive solutions of
$$
\begin{cases}
u''''(x)=\lambda h(x)f(u(x)), & 0<x<1, \\
u(0)=u(1)=u'(0)=u'(1)=0,&
\end{cases}
$$
where
$\lambda > 0$ is a parameter,
$h\in C[0,1]$,
$f\in C[0,\infty)$
and
$f(s)>0$
for
$s>0$.
We show that the problem has three positive solutions suggesting suitable
conditions on the nonlinearity.
Furthermore, we also establish the existence of infinitely
many positive solutions.
The proof is based on the bifurcation method.
Ключевые слова:
connected component, Green function, positive solutions, bifurcation, clamped beam.
Поступило: 12.01.2020
Образец цитирования:
Dongliang Yan, Ruyun Ma, Liping Wei, “Global Structure of Positive Solutions of Fourth-Order Problems
with Clamped Beam Boundary Conditions”, Math. Notes, 109:6 (2021), 962–970
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mzm13170
|
Статистика просмотров: |
Страница аннотации: | 99 |
|