Математические заметки
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Правила для авторов
Лицензионный договор
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Матем. заметки:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Математические заметки, 2021, том 109, выпуск 5, статья опубликована в англоязычной версии журнала (Mi mzm13125)  

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Статьи, опубликованные в английской версии журнала

Solutions of Super-Linear Elliptic Equations and Their Morse Indices

Foued Mtiri

Mathematics Department, Faculty of Sciences and Arts, King Khalid University, Muhayil Asir, 62529 Saudi Arabia
Аннотация: We investigate the degenerate bi-harmonic equation
$$ \Delta_{m}^2 u=f(x,u)\quad \text{in} \ \ \Omega, \qquad u = \Delta u = 0\quad \text{on}\ \ \partial\Omega, $$
with $m\ge 2$, and also the degenerate tri-harmonic equation:
$$ -\Delta_{m}^3 u=f(x,u)\quad \text{in} \ \ \Omega,\qquad u = \frac{\partial u}{\partial\nu}= \frac{\partial^{2} u}{\partial\nu^{2}} = 0\quad \text{on}\ \ \partial\Omega, $$
where $\Omega\subset \mathbb{R}^{N}$ is a bounded domain with smooth boundary $N>4$ or $N>6$ respectively, and $f \in\mathrm{C}^{1}(\Omega\times \mathbb{R})$ satisfies suitable m-superlinear and subcritical growth conditions. Our main purpose is to establish $L^{p}$ and $L^{\infty}$ explicit bounds for weak solutions via the Morse index. Our results extend previous explicit estimates obtained in [1]–[4].
Ключевые слова: $m$-polyharmonic equation, Morse index, elliptic estimates.
Финансовая поддержка Номер гранта
King Khalid University R.G.P-2/121/42
The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Abha, KSA, for funding this work through Research Group under grant number (R.G.P-2/121/42).
Поступило: 15.12.2019
Англоязычная версия:
Mathematical Notes, 2021, Volume 109, Issue 5, Pages 759–776
DOI: https://doi.org/10.1134/S0001434621050096
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: Foued Mtiri, “Solutions of Super-Linear Elliptic Equations and Their Morse Indices”, Math. Notes, 109:5 (2021), 759–776
Цитирование в формате AMSBIB
\Bibitem{Mti21}
\by Foued~Mtiri
\paper Solutions of Super-Linear Elliptic Equations
and Their Morse Indices
\jour Math. Notes
\yr 2021
\vol 109
\issue 5
\pages 759--776
\mathnet{http://mi.mathnet.ru/mzm13125}
\crossref{https://doi.org/10.1134/S0001434621050096}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000670513000009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85109729921}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/mzm13125
  • Эта публикация цитируется в следующих 1 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Статистика просмотров:
    Страница аннотации:96
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024