|
Математические заметки, 2021, том 109, выпуск 3, статья опубликована в англоязычной версии журнала
(Mi mzm13057)
|
|
|
|
Статьи, опубликованные в английской версии журнала
Some Finiteness Results for Local Cohomology Modules
with Respect to a Pair of Ideals
Batoul Naal, Kazem Khashyarmanesh Department of Pure Mathematics, Faculty of Mathematical Sciences
and Center of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, Mashhad, 1159-91775 Iran
Аннотация:
Suppose that
$R$
is a commutative Noetherian ring with identity,
$I$,
$J$
are ideals of
$R$,
and let
$M$
be a finitely generated
$R$-module.
Let
$H^i_{I,J}(-)$
be the
$i$th local
cohomology
functor with respect to
$(I, J)$.
In this paper, we show that the
$R$-module
$$\mathrm{Hom}_R(R/I,H^1_{I,J}(M)/JH^1_{I,J}(M))$$
is always finitely generated.
Moreover, we provide sufficient conditions such that the modules
$$
\mathrm{Hom}_R(R/I,H^i_{I,J}(M)/JH^i_{I,J}(M)) \qquad \mathrm{or} \qquad
\mathrm{Tor}^R_j(R/I,H^i_{I,J}(M)/JH^i_{I,J}(M))
$$
is finitely generated.
Ключевые слова:
local cohomology with respect to a pair of ideals, associated prime ideals, filter
regular element.
Поступило: 03.04.2020 Исправленный вариант: 16.09.2020
Образец цитирования:
Batoul Naal, Kazem Khashyarmanesh, “Some Finiteness Results for Local Cohomology Modules
with Respect to a Pair of Ideals”, Math. Notes, 109:3 (2021), 335–346
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mzm13057
|
Статистика просмотров: |
Страница аннотации: | 106 |
|