|
Математические заметки, 2022, том 111, выпуск 2, статья опубликована в англоязычной версии журнала
(Mi mzm12966)
|
|
|
|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Статьи, опубликованные в английской версии журнала
Borsuk's Partition Problem in
$(\mathbb{R}^{n},\ell_{p})$
Jun Wanga, Yuqin Zhangb a Center for Applied Mathematics, Tianjin University,
Tianjin, 300072 China
b School of Mathematics, Tianjin University, Tianjin, 300072 China
Аннотация:
For a bounded set $X$ with diameter $d_{C}(X)$ in a finite-dimensional normed space with an origin-symmetric convex body $C$ as the unit ball, the Borsuk number of $X$, denoted by $a_{C}(X)$, is the smallest integer $k$ such that $X$ can be represented as a union of $k$ sets, the diameter of each of which is strictly less than $d_{C}(X)$. In this paper, we solve the problem of finding the upper bound for the Borsuk number for any bounded set $X$ in the special Minkowski spaces $(\mathbb{R}^{n},\ell_{p})$. We have $a_{C}(X)\leq 2^{n}$ in $(\mathbb{R}^{n},\ell_{p})$, for all $p$ satisfying $1/(\log_{n}(n+1)-1)< p \leq + \infty$ and $2\leq n$, $n\in\mathbb{N}^{+}$. If $n=2$, we have $a_{C}(X)\leq 4$ for all values of $p$; this is proved by a new approach.
Ключевые слова:
Borsuk's partition problem, Minkowski space, covering, $K^{n}_{p}$, $\ell_{p}$ norm.
Поступило: 25.11.2020 Исправленный вариант: 23.04.2021
Образец цитирования:
Jun Wang, Yuqin Zhang, “Borsuk's Partition Problem in
$(\mathbb{R}^{n},\ell_{p})$”, Math. Notes, 111:2 (2022), 289–296
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mzm12966
|
|