|
Математические заметки, 2021, том 109, выпуск 3, статья опубликована в англоязычной версии журнала
(Mi mzm12944)
|
|
|
|
Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)
Статьи, опубликованные в английской версии журнала
An Invariant Subbundle of the KZ Connection mod
$p$
and Reducibility of
$\widehat{\mathfrak{sl}_2}$
Verma Modules mod $p$
A. N. Varchenkoabc a Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3250 USA
b Faculty of Mathematics and Mechanics, Lomonosov Moscow State University, Moscow GSP-1, 119991 Russia
c Moscow Center of Fundamental and Applied Mathematics, Moscow, 119991 Russia
Аннотация:
We consider the KZ differential equations over
$\mathbb C$
in the case, when its multidimensional hypergeometric solutions are
one-dimensional integrals.
We also consider the same differential equations
over a finite field
$\mathbb{F}_p$.
We study the space of polynomial solutions
of these differential equations over
$\mathbb{F}_p$,
constructed in a previous
work by V. Schechtman and the author.
The module of these polynomial
solutions defines an invariant subbundle of the associated KZ connection
modulo
$p$.
We describe the algebraic equations for that subbundle and
argue that the equations correspond to highest weight vectors of the associated
$\widehat{\mathfrak{sl}_2}$
Verma modules over the field
$\mathbb{F}_p$.
Ключевые слова:
KZ equations, reduction to characteristic
$p$,
$\mathbb{F}_p$-hypergeometric
solutions.
Поступило: 28.10.2020
Образец цитирования:
A. N. Varchenko, “An Invariant Subbundle of the KZ Connection mod
$p$
and Reducibility of
$\widehat{\mathfrak{sl}_2}$
Verma Modules mod $p$”, Math. Notes, 109:3 (2021), 386–397
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mzm12944
|
Статистика просмотров: |
Страница аннотации: | 103 |
|