|
Математические заметки, 2022, том 111, выпуск 6, статья опубликована в англоязычной версии журнала
(Mi mzm12916)
|
|
|
|
Статьи, опубликованные в английской версии журнала
On the Exponential Diophantine Equation
$(a^{n}-2)(b^{n}-2)=x^{2}$
Z. Şiara, R. Keskinb a Department of Mathematics, Bingöl University,
Bingöl, 12000 Turkey
b Department of Mathematics, Sakarya University,
Sakarya, 54000 Turkey
Аннотация:
In this paper, we deal with the equation
$(a^{n}-2)(b^{n}-2)=x^{2}$,
$2\leq a<b$,
and
$a,b,x,n\in\mathbb{N}$.
We solve this equation for
$(a,b)\in\{(2,10),(4,100),(10,58),(3,45)\}$.
Moreover, we show
that
$(a^{n}-2)(b^{n}-2)=x^{2}$
has no solution
$n,x$
if
$2|n$
and
$\gcd(a,b)=1$.
We also give a conjecture which says that the equation
$(2^{n}-2)((2P_{k})^{n}-2)=x^{2}$
has only the solution
$(n,x)=(2,Q_{k})$,
where
$k>3$
is odd
and
$P_{k},Q_{k}$
are the Pell and Pell Lucas numbers, respectively.
We also
conjecture that if the equation
$(a^{n}-2)(b^{n}-2)=x^{2}$
has a solution
$n,x,$
then
$n\leq6$.
Ключевые слова:
Pell equation, exponential Diophantine equation, Lucas sequence.
Поступило: 02.10.2020 Исправленный вариант: 21.07.2021
Образец цитирования:
Z. Şiar, R. Keskin, “On the Exponential Diophantine Equation
$(a^{n}-2)(b^{n}-2)=x^{2}$”, Math. Notes, 111:6 (2022), 903–912
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mzm12916
|
|