|
Математические заметки, 2018, том 104, выпуск 6, статья опубликована в англоязычной версии журнала
(Mi mzm12344)
|
|
|
|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Статьи, опубликованные в английской версии журнала
Algebra of Symmetries of Three-Frequency Resonance:
Reduction of a Reducible Case to an Irreducible Case
M. V. Karasev, E. M. Novikova National Research University Higher School of Economics, Moscow, 101000 Russia
Аннотация:
For the three-frequency quantum resonance oscillator, the reducible case,
where the frequencies are integer and at least one pair of frequencies has
a nontrivial common divisor, is studied.
It is shown how the description of the algebra of symmetries
of such an oscillator can be reduced to the irreducible case
of pairwise coprime integer frequencies.
Polynomial algebraic relations are written,
and irreducible representations and coherent states are constructed.
Ключевые слова:
frequency resonance, algebra of symmetries, nonlinear commutation relations, coherent
states.
Поступило: 30.10.2018
Образец цитирования:
M. V. Karasev, E. M. Novikova, “Algebra of Symmetries of Three-Frequency Resonance:
Reduction of a Reducible Case to an Irreducible Case”, Math. Notes, 104:6 (2018), 833–847
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mzm12344
|
|