|
Математические заметки, 2017, том 102, выпуск 2, статья опубликована в англоязычной версии журнала
(Mi mzm11760)
|
|
|
|
Эта публикация цитируется в 8 научных статьях (всего в 8 статьях)
Статьи, опубликованные в английской версии журнала
New Insight into the Partition Theory of Integers
Related to Problems of Thermodynamics
and Mesoscopic Physics
V. P. Maslovab a National Research University Higher School of Economics,
Moscow, Russia
b Ishlinsky Institute for Problems in Mechanics, Moscow, Russia
Аннотация:
It is shown in the paper that the number $p_N(M)$ of partitions of
a positive integer $M$ into $N$ positive integer summands coincides
with the Bose and Fermi distributions with logarithmic accuracy if
one identifies $M$ with energy and $N$ with the number of
particles. We use the Gentile statistics (a.k.a. parastatistics) to
derive self-consistent algebraic equations that enable one to
construct the curves representing the least upper bound and the
greatest lower bound of the repeated limits as $M\to \infty$ and
$N\to \infty$. The resulting curves allow one to generalize the notion
of BKT (Berezinskii–Kosterlitz–Thouless) topological phase
transition and explaining a number of phenomena in thermodynamics
and mesoscopic physics.
Ключевые слова:
tropical analysis, logarithmic accuracy, turbulence,
enveloping series, topological phase transition, boson, fermion,
critical energy, mesoscopic physics, Erdős formula,
Hardy–Ramanujan theorems, liquid-drop model of nucleus, neutron, A-bomb.
Поступило: 11.03.2017
Образец цитирования:
V. P. Maslov, “New Insight into the Partition Theory of Integers
Related to Problems of Thermodynamics
and Mesoscopic Physics”, Math. Notes, 102:2 (2017), 232–249
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mzm11760
|
Статистика просмотров: |
Страница аннотации: | 264 |
|