Аннотация:
A new correspondence between the solutions of the minimal surface equation in a certain
3-dimensional Riemannian warped product and the solutions of the maximal surface
equation in a
3-dimensional standard static space-time is given.
This widely extends
the classical duality between minimal graphs in
3-dimensional Euclidean space and
maximal graphs in
3-dimensional Lorentz–Minkowski space-time.
We highlight the
fact
that this correspondence can be restricted to the respective classes of entire
solutions.
As an application, a Calabi–Bernstein-type result for certain static
standard space-times is proved.
Образец цитирования:
José A. S. Pelegrin, Alfonso Romero, Rafael M. Rubio, “An Extension of Calabi's Correspondence
between the Solutions of Two Bernstein Problems
to More General Elliptic Nonlinear Equations”, Math. Notes, 105:2 (2019), 280–284
\Bibitem{PelRomRub19}
\by Jos\'e~A.~S.~Pelegrin, Alfonso~Romero, Rafael~M.~Rubio
\paper An Extension of Calabi's Correspondence
between the Solutions of Two Bernstein Problems
to More General Elliptic Nonlinear Equations
\jour Math. Notes
\yr 2019
\vol 105
\issue 2
\pages 280--284
\mathnet{http://mi.mathnet.ru/mzm11546}
\crossref{https://doi.org/10.1134/S0001434619010309}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3938722}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000464727500030}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85064269712}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mzm11546
Эта публикация цитируется в следующих 3 статьяx:
A. Soria, “Spacelike hypersurfaces in twisted product spacetimes with complete fiber and Calabi–Bernstein-type problems”, J. Geom., 114:2 (2023), 16
A. Martinez, A. L. Martinez-Trivino, “A calabi's type correspondence”, Nonlinear Anal.-Theory Methods Appl., 191 (2020), UNSP 111637
Pelegrin J.A.S., “Minimal and Weakly Trapped Submanifolds in Standard Static Spacetimes”, J. Math. Anal. Appl., 480:2 (2019), 123448