|
Математические заметки, 2019, том 105, выпуск 2, статья опубликована в англоязычной версии журнала
(Mi mzm11546)
|
|
|
|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
Статьи, опубликованные в английской версии журнала
An Extension of Calabi's Correspondence
between the Solutions of Two Bernstein Problems
to More General Elliptic Nonlinear Equations
José A. S. Pelegrina, Alfonso Romeroa, Rafael M. Rubiob a Departamento de Geometría y Topología,
Universidad de Granada,
Granada, 18071 Spain
b Departamento de Matemáticas, Campus de Rabanales,
Universidad de Córdoba,
Córdoba, 14071 Spain
Аннотация:
A new correspondence between the solutions of the minimal surface equation in a certain
$3$-dimensional Riemannian warped product and the solutions of the maximal surface
equation in a
$3$-dimensional standard static space-time is given.
This widely extends
the classical duality between minimal graphs in
$3$-dimensional Euclidean space and
maximal graphs in
$3$-dimensional Lorentz–Minkowski space-time.
We highlight the
fact
that this correspondence can be restricted to the respective classes of entire
solutions.
As an application, a Calabi–Bernstein-type result for certain static
standard space-times is proved.
Ключевые слова:
minimal surface equation, maximal surface equation,
Riemannian warped product manifold, standard static space-time.
Поступило: 03.02.2017 Исправленный вариант: 22.12.2017
Образец цитирования:
José A. S. Pelegrin, Alfonso Romero, Rafael M. Rubio, “An Extension of Calabi's Correspondence
between the Solutions of Two Bernstein Problems
to More General Elliptic Nonlinear Equations”, Math. Notes, 105:2 (2019), 280–284
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mzm11546
|
Статистика просмотров: |
Страница аннотации: | 146 |
|