|
Математические заметки, 2018, том 103, выпуск 2, статья опубликована в англоязычной версии журнала
(Mi mzm11183)
|
|
|
|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Статьи, опубликованные в английской версии журнала
Real-Imaginary Conjugacy Classes and Real-Imaginary
Irreducible Characters in Finite Groups
S. M. Robati Imam Khomeini International University,
Qazvin, Iran
Аннотация:
Let
$G$
be a finite group.
A character
$\chi$
of
$G$
is said to be
real-imaginary if its values are real or purely imaginary.
A conjugacy class
$C$
of
$a$
in
$G$
is real-imaginary if and only if
$\chi(a)$
is real or purely imaginary for all irreducible characters
$\chi$
of
$G$.
A finite group
$G$
is called real-imaginary if all of its irreducible characters
are real-imaginary.
In this paper, we describe real-imaginary conjugacy classes
and irreducible characters and study some results related to the
real-imaginary groups.
Moreover, we investigate some connections between
the structure of group
$G$
and both the set of all
the real-imaginary irreducible characters of
$G$
and the set of
all the real-imaginary conjugacy classes of
$G$.
Ключевые слова:
conjugacy classes, irreducible characters, real group.
Поступило: 18.03.2016 Исправленный вариант: 01.01.2017
Образец цитирования:
S. M. Robati, “Real-Imaginary Conjugacy Classes and Real-Imaginary
Irreducible Characters in Finite Groups”, Math. Notes, 103:2 (2018), 251–258
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mzm11183
|
|