|
Статьи, опубликованные в английской версии журнала
Classification of Finite Commutative Rings with Planar, Toroidal, and Projective Line Graphs Associated with Jacobson Graphs
A. Parsapoura, K. Khashyarmanesha, M. Afkhamib, Kh. Ahmad Javaheria a Department of Pure Mathematics, International Campus of Ferdowsi University of Mashhad, Mashhad, Iran
b Department of Mathematics, University of Neyshabur,
Neyshabur, Iran
Аннотация:
Let $R$ be a commutative ring with nonzero identity and $J(R)$ be the Jacobson radical of $R$. The Jacobson graph of $R$, denoted by $\mathfrak{J}_R$, is a graph with vertex-set $ R \setminus J(R)$, such that two distinct vertices $a$ and $b$ in $R\setminus J(R)$ are adjacent if and only if $1- ab$ is not a unit of $R$. Also, the line graph of the Jacobson graph is denoted by $L(\mathfrak{J}_R)$. In this paper, we characterize all finite commutative rings $R$ such that the graphs $L(\mathfrak{J}_R)$ are planar, toroidal or projective.
Ключевые слова:
Jacobson graph, line graph, planar graph, projective graph, toroidal graph.
Поступило: 29.07.2013 Исправленный вариант: 17.06.2015
Образец цитирования:
A. Parsapour, K. Khashyarmanesh, M. Afkhami, Kh. Ahmad Javaheri, Math. Notes, 98:5 (2015), 813–819
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mzm11025https://doi.org/10.1134/S0001434615110103
|
Статистика просмотров: |
Страница аннотации: | 205 |
|