Математические заметки
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Правила для авторов
Лицензионный договор
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Матем. заметки:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Математические заметки, 2015, том 97, выпуск 5, статья опубликована в англоязычной версии журнала (Mi mzm10924)  

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Статьи, опубликованные в английской версии журнала

The Finiteness of Coassociated Primes of Generalized Local Homology Modules

T. T. Nam, D. N. Yen

Ho Chi Minh Pedagogical University, Ho Chi Minh City, Vietnam
Аннотация: We present some finiteness results for co-associated primes of generalized local homology modules. Let $M$ be a finitely generated $R$-module and $N$ a linearly compact $R$-module. If $N$ and $H^I_i(N)$ satisfy the finiteness condition for co-associated primes for all $i<k$, then $\operatorname{Coass}_R(H^I_k(M, N))$ is a finite set. On the other hand, if $H^I_i(N)=0$ for all $i<t$ and ${\operatorname{Tor}}^R_j(M,H^I_t(N))=0$ for all $j<h$, then ${\operatorname{Tor}}^R_h(M,H^I_t(N))\cong H^I_{h+t}(M, N)$. Moreover, $\operatorname{Coass}(H^I_{h+t}(M, N))$ is also a finite set provided $N$ satisfies the finiteness condition for co-associated primes. Finally, $N$ is a semi-discrete linearly compact $R$-module such that $0:_NI\not=0$. Let $t=\operatorname{Width}_I(N)$ and $h={\operatorname{tor}}_-(M,H^I_t(N))$; it follows that $\operatorname{Width}_{I+\operatorname{Ann}(M)}(N)=t+h$ and $\operatorname{Coass}(H^I_{h+t}(M, N))$ is a finite set.
Ключевые слова: linearly compact module, local homology, local cohomology.
Поступило: 28.03.2013
Англоязычная версия:
Mathematical Notes, 2015, Volume 97, Issue 5, Pages 738–744
DOI: https://doi.org/10.1134/S0001434615050089
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/mzm10924
  • Эта публикация цитируется в следующих 1 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Статистика просмотров:
    Страница аннотации:27
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024