|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
Задачи Штурма — Лиувилля в весовых пространствах в областях с негладкими ребрами. II
Н. Тархановa, А. А. Шлапуновb a Universität Potsdam, Institut für Mathematik, Am Neuen Palais, 10, Potsdam, 14469 GERMANY
b Сибирский федеральный университет, Институт математики
и фундаментальной информатики, просп. Свободный, 79,
Красноярск, 660041 РОССИЯ
Аннотация:
В работе рассматриваются (вообще говоря, некоэрцитивные) смешанные задачи в ограниченной области $\mathcal{D}$ из $\mathbb{R}^n$ для эллиптического дифференциального оператора $A(x,\partial)$ второго порядка в частных производных. Предполагается, что оператор записан в дивергентной форме в $\mathcal{D}$, граничный оператор $B(x,\partial)$ задается сужением линейной комбинации функции и ее производных на $\partial\mathcal{D}$, а граница $\mathcal{D}$ — липшицева поверхность.
Работа состоит из двух частей. В первой части изложена теория специальных весовых пространств Соболева–Слободецкого в липшицевых областях. Вторая часть, представленная данной статьей, посвящена изучению спектральных свойств смешанных задач, ассоциированных с некоторыми, вообще говоря, некоэрцитивными формами. Выделяется замкнутое множество $Y\subset\partial\mathcal{D}$ и контролируется рост решений вблизи $Y$. Доказывается, что пара $(A,B)$ индуцирует фредгольмов оператор $L$ в описанных в части I весовых пространствах соболевского типа, где вес является степенью расстояния до особого множества $Y$. Наконец, доказывается полнота корневых функций, ассоциированных с оператором $L$.
Ключевые слова и фразы:
смешанные задачи, некоэрцитивные граничные условия, эллиптические операторы, корневые функции, весовые соболевские пространства.
Статья поступила: 01.04.2014
Образец цитирования:
Н. Тарханов, А. А. Шлапунов, “Задачи Штурма — Лиувилля в весовых пространствах в областях с негладкими ребрами. II”, Матем. тр., 18:2 (2015), 133–204; Siberian Adv. Math., 26:4 (2016), 247–293
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mt297 https://www.mathnet.ru/rus/mt/v18/i2/p133
|
Статистика просмотров: |
Страница аннотации: | 409 | PDF полного текста: | 134 | Список литературы: | 57 | Первая страница: | 3 |
|