|
Труды Московского математического общества, 2022, том 83, выпуск 2, страницы 219–239
(Mi mmo671)
|
|
|
|
Existence and uniqueness result for reaction-diffusion model of diffusive population dynamics
A. Kh. Khachatryana, Kh. A. Khachatryanbc, A. Zh. Narimanyand a National Agrarian University of Armenia
b Department of Mathematics and Mechanics, Yerevan State University
c Lomonosov Moscow State University, Moscow, Russia
d University of Bremen, Faculty of Mathematics and Computer Science
Аннотация:
The present work investigates a convolution type nonlinear integro-differential equation with diffusion. This type of equations represent not only pure mathematical interest, but also are widely used in various applications, especially in wide range of problems on population dynamics arising in biology. The existence of a parametric family of travelling wave solutions as well as the uniqueness of the solution in certain class of bounded continuous functions on $\mathbb{R}$ is proved. The study investigates also some important properties as well as asymptotic behaviour of constructed solutions. This results are then used to derive a new uniform estimate for the deviation between successive iterations, which provides us with a strong tool to control the number of iterations on our way of computing the desired numerical approximation of the exact solution. Finally, we apply our theoretical results to two well-known population problems modelled by delayed reaction-diffusion equation: Diffusion model for spatial-temporal spread of epidemics and stage structured population model. References: 16 entries.
Ключевые слова и фразы:
convolution, integro-differential equation, reaction-diffusion, asymmetric kernel, epidemics.
Поступила в редакцию: 25.05.2022
Образец цитирования:
A. Kh. Khachatryan, Kh. A. Khachatryan, A. Zh. Narimanyan, “Existence and uniqueness result for reaction-diffusion model of diffusive population dynamics”, Тр. ММО, 83, no. 2, МЦНМО, М., 2022, 219–239
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mmo671 https://www.mathnet.ru/rus/mmo/v83/i2/p219
|
Статистика просмотров: |
Страница аннотации: | 213 | PDF полного текста: | 24 | Список литературы: | 32 | Первая страница: | 14 |
|