|
Труды Московского математического общества, 2021, том 82, выпуск 1, страницы 79–92
(Mi mmo647)
|
|
|
|
Lyapunov exponents for transfer operator cocycles of metastable maps: a quarantine approach
C. González-Tokmana, A. Quasb a The University of Queensland, Brisbane
b University of Victoria
Аннотация:
This works investigates the Lyapunov–Oseledets spectrum of transfer operator cocycles associated to one-dimensional random paired tent maps depending on a parameter $\varepsilon$, quantifying the strength of the leakage between two nearly invariant regions. We show that the system exhibits metastability, and identify the second Lyapunov exponent $\lambda_2^\varepsilon$ within an error of order $\varepsilon^2|\log \varepsilon|$. This approximation agrees with the naive prediction provided by a time-dependent two-state Markov chain. Furthermore, it is shown that $\lambda_1^\varepsilon=0$ and $\lambda_2^\varepsilon$ are simple, and the only exceptional Lyapunov exponents of magnitude greater than $-\log2+ O\Big(\log\log\frac 1\varepsilon\big/\log\frac 1\varepsilon\Big)$.
Ключевые слова и фразы:
multiplicative ergodic theory, Lyapunov exponents, transfer operators, metastability.
Поступила в редакцию: 16.01.2021
Образец цитирования:
C. González-Tokman, A. Quas, “Lyapunov exponents for transfer operator cocycles of metastable maps: a quarantine approach”, Тр. ММО, 82, no. 1, МЦНМО, М., 2021, 79–92; Trans. Moscow Math. Soc., 82 (2021), 65–76
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mmo647 https://www.mathnet.ru/rus/mmo/v82/i1/p79
|
Статистика просмотров: |
Страница аннотации: | 59 | PDF полного текста: | 9 | Список литературы: | 23 | Первая страница: | 4 |
|