|
Труды Московского математического общества, 2021, том 82, выпуск 1, страницы 3–18
(Mi mmo644)
|
|
|
|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Positive entropy implies chaos along any infinite sequence
Wen Huanga, Jian Lib, Xiangdong Yea a School of Mathematical Sciences, University of Science and Technology of China
b Department of Mathematics, Shantou University
Аннотация:
Let $G$ be an infinite countable discrete amenable group. For any $G$-action on a compact metric space $(X,\rho)$, it turns out that if the action has positive topological entropy, then for any sequence $\{s_i\}_{i=1}^{+\infty}$ with pairwise distinct elements in $G$ there exists a Cantor subset $K$ of $X$ which is Li–Yorke chaotic along this sequence, that is, for any two distinct points $x,y\in K$, one has
$$
\limsup\limits_{i\to+\infty}\rho(s_i x,s_iy)>0,\ \text{and}\ \liminf_{i\to+\infty}\rho(s_ix,s_iy)=0.
$$
Ключевые слова и фразы:
Li–Yorke chaos, topological entropy, measure-theoretic entropy, amenable group action.
Поступила в редакцию: 14.06.2020 Исправленный вариант: 14.12.2020
Образец цитирования:
Wen Huang, Jian Li, Xiangdong Ye, “Positive entropy implies chaos along any infinite sequence”, Тр. ММО, 82, no. 1, МЦНМО, М., 2021, 3–18; Trans. Moscow Math. Soc., 82 (2021), 1–14
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mmo644 https://www.mathnet.ru/rus/mmo/v82/i1/p3
|
|