|
Труды Московского математического общества, 2020, том 81, выпуск 1, страницы 117–136
(Mi mmo637)
|
|
|
|
Эта публикация цитируется в 7 научных статьях (всего в 7 статьях)
Arens–Michael envelopes of nilpotent Lie algebras, holomorphic functions of exponential type and homological epimorphisms
O. Yu. Aristov
Аннотация:
Our aim is to give an explicit description of the Arens–Michael envelope for the universal enveloping algebra of a finite-dimensional nilpotent complex Lie algebra. It turns out that the Arens–Michael envelope belongs to a class of completions introduced by R. Goodman in 1970s. To find a precise form of this algebra we characterize preliminary the set of holomorphic functions of exponential type on a simply connected nilpotent complex Lie group. This approach leads to unexpected connections to Riemannian geometry and the theory of order and type for entire functions.
As a corollary, it is shown that the Arens–Michael envelope considered above is a homological epimorphism. So we get a positive answer to a question investigated earlier by Dosi and Pirkovskii. References: 36 entries.
Ключевые слова и фразы:
nilpotent Lie algebra, Arens–Michael envelope, holomorphic function of exponential type, homological epimorphism, submultiplicative weight, length function.
Поступила в редакцию: 10.01.2019 Исправленный вариант: 08.09.2019
Образец цитирования:
O. Yu. Aristov, “Arens–Michael envelopes of nilpotent Lie algebras, holomorphic functions of exponential type and homological epimorphisms”, Тр. ММО, 81, no. 1, МЦНМО, М., 2020, 117–136; Trans. Moscow Math. Soc., 81:1 (2020), 97–114
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mmo637 https://www.mathnet.ru/rus/mmo/v81/i1/p117
|
Статистика просмотров: |
Страница аннотации: | 147 | PDF полного текста: | 33 | Список литературы: | 21 | Первая страница: | 4 |
|