Труды Московского математического общества
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор
Историческая справка

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Тр. ММО:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Труды Московского математического общества, 2018, том 79, выпуск 2, страницы 271–334 (Mi mmo616)  

Эта публикация цитируется в 23 научных статьях (всего в 23 статьях)

Об асимптотических формулах в некоторых вопросах теории сумм произведений

И. Д. Шкредовabc

a МФТИ
b Математический институт им. В. А. Стеклова РАН
c ИППИ РАН
Список литературы:
Аннотация: В работе получен ряд асимптотических формул, связанных с феноменом сумм произведений над простым полем $\mathbb{F}_p$. В доказательствах используются обычные теоремы об инциденциях в $\mathbb{F}_p$, а также результат о росте в группе $\mathrm{SL}_2(\mathbb{F}_p$), принадлежащий Хельфготту. Перечислим некоторые из наших результатов:
  • новая оценка для числа решений уравнения $(a_1-a_2)(a_3-a_4)=(a_1'-a_2')(a_3'-a_4')$, $a_i,~a_i'\in A$, $A$ — произвольное подмножество $\mathbb{F}_p$;
  • новая эффективная оценка для мультилинейных тригонометрических сумм Бургана;
  • асимптотический аналог теоремы о разложимости Балога–Вули;
  • нижние оценки на мощность множеств вида $\{p_1(b)+1/(a+p_2(b))\}$, где $a,~b$ пробегают два подмножества $\mathbb{F}_p$, а $p_1, p_2\in \mathbb{F}_p[x]$ — два непостоянных многочлена;
  • новые оценки для тригонометрических сумм с мультипликативными и аддитивными характерами.

Библиография: 60 названий.
Ключевые слова и фразы: комбинаторная теория чисел, феномен сумм произведений, конечные поля, асимптотические формулы.
Финансовая поддержка Номер гранта
Российский научный фонд 14–11–00433
Работа выполнена при финансовой поддержке Российского научного фонда (грант № 14–11–00433).
Поступила в редакцию: 23.01.2018
Исправленный вариант: 25.07.2018
Англоязычная версия:
Transactions of the Moscow Mathematical Society, 2018, Pages 231–281
DOI: https://doi.org/10.1090/mosc/283
Реферативные базы данных:
Тип публикации: Статья
УДК: 511.178
MSC: 11B75
Образец цитирования: И. Д. Шкредов, “Об асимптотических формулах в некоторых вопросах теории сумм произведений”, Тр. ММО, 79, № 2, МЦНМО, М., 2018, 271–334; Trans. Moscow Math. Soc., 2018, 231–281
Цитирование в формате AMSBIB
\RBibitem{Shk18}
\by И.~Д.~Шкредов
\paper Об асимптотических формулах в некоторых вопросах
теории сумм произведений
\serial Тр. ММО
\yr 2018
\vol 79
\issue 2
\pages 271--334
\publ МЦНМО
\publaddr М.
\mathnet{http://mi.mathnet.ru/mmo616}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3881467}
\elib{https://elibrary.ru/item.asp?id=37045101}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2018
\pages 231--281
\crossref{https://doi.org/10.1090/mosc/283}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85060997066}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/mmo616
  • https://www.mathnet.ru/rus/mmo/v79/i2/p271
  • Эта публикация цитируется в следующих 23 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Московского математического общества
    Статистика просмотров:
    Страница аннотации:302
    PDF полного текста:61
    Список литературы:39
    Первая страница:1
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024