|
Труды Московского математического общества, 2018, том 79, выпуск 1, страницы 1–95
(Mi mmo608)
|
|
|
|
Эта публикация цитируется в 45 научных статьях (всего в 45 статьях)
Quantum $q$-Langlands correspondence
M. Aganagicab, E. Frenkela, A. Okounkovcde a Department of Mathematics,
University of California, Berkeley, USA
b Center for Theoretical Physics,
University of California, Berkeley, USA
c IITP, Moscow, Russia
d Department of Mathematics,
Columbia University, New York, USA
e Laboratory of Representation Theory
and Mathematical Physics,
Higher School of Economics, Moscow, Russia
Аннотация:
We conjecture, and prove for all simply-laced Lie algebras, an identification
between the spaces of $q$-deformed conformal blocks for the deformed $\mathcal{
W}$-algebra $\mathcal{ W}_{q,t}(\mathfrak{g})$ and quantum affine algebra of
$\widehat{^L\mathfrak{g}}$, where $^L\mathfrak{g}$ is the Langlands dual Lie algebra to $\mathfrak{g}$.
We argue that this identification may be viewed as a manifestation of
a $q$-deformation of the quantum Langlands correspondence. Our proof relies on
expressing the $q$-deformed conformal blocks for both algebras in terms of the
quantum $\mathrm{K}$-theory of the Nakajima quiver varieties. The physical origin of the
isomorphism between them lies in the $\mathrm{6d}$ little string theory. The quantum
Langlands correspondence emerges in the limit in which the $\mathrm{6d}$ little string
theory becomes the $\mathrm{6d}$ conformal field theory with $(2,0)$ supersymmetry.
References: 130 entries.
Ключевые слова и фразы:
Landlands correspondence, $q$-conformal blocks.
Поступила в редакцию: 15.04.2017 Исправленный вариант: 20.05.2018
Образец цитирования:
M. Aganagic, E. Frenkel, A. Okounkov, “Quantum $q$-Langlands correspondence”, Тр. ММО, 79, no. 1, МЦНМО, М., 2018, 1–95; Trans. Moscow Math. Soc., 2018, 1–83
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mmo608 https://www.mathnet.ru/rus/mmo/v79/i1/p1
|
Статистика просмотров: |
Страница аннотации: | 351 | PDF полного текста: | 154 | Список литературы: | 45 | Первая страница: | 20 |
|