|
Труды Московского математического общества, 2017, том 78, выпуск 1, страницы 17–88
(Mi mmo593)
|
|
|
|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
Representations of superconformal algebras and mock theta functions
V. G. Kaca, M. Wakimotob a Department of Mathematics, M.I.T, Cambridge, MA 02139, USA
b 12–4 Karato-Rokkoudai, Kita-ku, Kobe 651–1334, Japan
Аннотация:
It is well known that the normalized characters of integrable highest weight
modules of given level over an affine Lie algebra $\hat{\mathfrak{g}}$ span an
$\mathrm{SL}_2(\mathbb{Z})$–invariant space. This result extends to admissible
$\hat{\mathfrak{g}}$–modules, where $\mathfrak{g}$ is a simple Lie algebra or
$\mathrm{osp}_{1|n}$. Applying the quantum Hamiltonian reduction (QHR) to admissible
$\hat{\mathfrak{g}}$–modules when $\mathfrak{g} =s\ell_2$ (resp. $=\mathrm{osp}_{1|2}$) one
obtains minimal series modules over the Virasoro (resp. $N=1$ superconformal
algebras), which form modular invariant families.
Another instance of modular invariance occurs for boundary level admissible
modules, including when $\mathfrak{g}$ is a basic Lie superalgebra. For
example, if $\mathfrak{g}=s\ell_{2|1}$ (resp. $=\mathrm{osp}_{3|2}$), we thus obtain
modular invariant families of $\hat{\mathfrak{g}}$–modules, whose QHR produces
the minimal series modules for the $N=2$ superconformal algebras (resp.
a modular invariant family of $N=3$ superconformal algebra modules).
However, in the case when $\mathfrak{g}$ is a basic Lie superalgebra different
from a simple Lie algebra or $\mathrm{osp}_{1|n}$, modular invariance of normalized
supercharacters of admissible $\hat{\mathfrak{g}}$–modules holds outside of
boundary levels only after their modification in the spirit of Zwegers'
modification of mock theta functions. Applying the QHR, we obtain families of
representations of $N=2,3,4$ and big $N=4$ superconformal algebras, whose
modified (super)characters span an $\mathrm{SL}_2(\mathbb{Z})$–invariant space.
Ключевые слова и фразы:
basic Lie superalgebra, affine Lie superalgebra, superconformal
algebra, integrable and admissible representations of affine Lie superalgebras,
quantum Hamiltonian reduction, theta function, mock theta function and its
modification, modular invariant family of characters.
Поступила в редакцию: 12.01.2017 Исправленный вариант: 01.04.2017
Образец цитирования:
V. G. Kac, M. Wakimoto, “Representations of superconformal algebras and mock theta functions”, Тр. ММО, 78, no. 1, МЦНМО, М., 2017, 17–88; Trans. Moscow Math. Soc., 78 (2017), 9–74
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mmo593 https://www.mathnet.ru/rus/mmo/v78/i1/p17
|
Статистика просмотров: |
Страница аннотации: | 250 | PDF полного текста: | 52 | Список литературы: | 32 | Первая страница: | 3 |
|