|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
The classification of certain linked $3$-manifolds in $6$-space
[Классификация зацеплений некоторых трехмерных многообразий в шестимерном пространстве]
S. Avvakumov Institute of Science and Technology Austria, IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
Аннотация:
Мы классифицируем брунновы (незаузленные на каждой из компонент) вложения $(S^2\times S^1)\sqcup S^3\to\mathbb R^6$. Любое брунново вложение $(S^2\times S^1)\sqcup S^3\to\mathbb R^6$ изотопно одному из явно построенных вложений $f_{k,m,n}$, где $m\equiv n\pmod2$. Два вложения $f_{k,m,n}$ и $f_{k',m',n'}$ изотопны тогда и только тогда, когда $k=k'$, $m\equiv m'\pmod{2k}$ и $n\equiv n'\pmod{2k}$.
В доказательстве используется классификация вложений $S^3\sqcup S^3\to\mathbb R^6$ полученная А. Хефлигером. Связь между вложениями $(S^2\times S^1)\sqcup S^3\to\mathbb R^6$ и $S^3\sqcup S^3\to\mathbb R^6$, однако, нетривиальна. Например, мы показываем что существуют вложения $f\colon(S^2\times S^1)\sqcup S^3\to\mathbb R^6$ и $g,g'\colon S^3\sqcup S^3\to\mathbb R^6$ такие, что покомпонентная вложенная связная сумма $f\#g$ изотопна $f\#g'$, при этом $g$ не изотопно $g'$.
Статья поступила: 28 октября 2014 г.; исправленный вариант 7 сентября 2015 г.
Образец цитирования:
S. Avvakumov, “The classification of certain linked $3$-manifolds in $6$-space”, Mosc. Math. J., 16:1 (2016), 1–25
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mmj592 https://www.mathnet.ru/rus/mmj/v16/i1/p1
|
Статистика просмотров: |
Страница аннотации: | 213 | Список литературы: | 56 |
|