Moscow Mathematical Journal
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Mosc. Math. J.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Moscow Mathematical Journal, 2012, том 12, номер 4, страницы 671–700
DOI: https://doi.org/10.17323/1609-4514-2012-12-4-671-700
(Mi mmj475)
 

Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)

Chern classes of graph hypersurfaces and deletion-contraction relations
[Классы Чженя графовых гиперповерхностей и соотношение удаления-стягивания]

Paolo Aluffi

Mathematics Department, Florida State University, Tallahassee FL 32306, U.S.A.
Список литературы:
Аннотация: Мы изучаем поведение классов Чженя графовых гиперповерхностей при удалении или стягивании ребра на соответствующем графе. Для случая, когда выполняются некоторые технические условия, мы получаем явную формулу; мы показываем, что указанные условия выполнены, если ребро является кратным в графе. Отсюда получаются рекуррентные формулы для классов Чженя гиперповерхностей, соответствующих графам, полученным добавлением параллельных ребер к данному регулярному ребру.
Аналогичные результаты для классов Гротендика были известны раньше; и классы Гротендика, и классы Чженя использовались для определения «алгеброгеометрических» правил Фейнмана. Результаты настоящей статьи доставляют дополнительные подтверждения тому тезису, что полиномиальное правило Фейнмана, определенное в терминах класса Чженя–Шварца–Макферсона графовой гиперповерхности, тесно связано с комбинаторикой соответствующего графа.
Доказательство основного результата основывается на более общей формуле для класса Чженя–Шварца–Макферсона трансверсального пересечения; эта формула может представлять и независимый интерес.
Мы также описываем более геометрический подход, основанный на специализации Вердье.
Статья поступила: 1 июля 2011 г.; исправленный вариант 9 января 2012 г.
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: Paolo Aluffi, “Chern classes of graph hypersurfaces and deletion-contraction relations”, Mosc. Math. J., 12:4 (2012), 671–700
Цитирование в формате AMSBIB
\RBibitem{Alu12}
\by Paolo~Aluffi
\paper Chern classes of graph hypersurfaces and deletion-contraction relations
\jour Mosc. Math.~J.
\yr 2012
\vol 12
\issue 4
\pages 671--700
\mathnet{http://mi.mathnet.ru/mmj475}
\crossref{https://doi.org/10.17323/1609-4514-2012-12-4-671-700}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3076849}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000314341500001}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/mmj475
  • https://www.mathnet.ru/rus/mmj/v12/i4/p671
  • Эта публикация цитируется в следующих 6 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Статистика просмотров:
    Страница аннотации:189
    Список литературы:52
    Первая страница:4
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024