|
Эта публикация цитируется в 33 научных статьях (всего в 33 статьях)
Interlocking of convex polyhedra: towards a geometric theory of fragmented solids
[Самозаклинивающиеся структуры выпуклых многогранников]
A. J. Kanel-Belovabc, A. V. Dyskind, Y. Estrinef, E. Pasternakg, I. A. Ivanov-Pogodaevh a Moscow Institute of Open Education, Moscow, Russia
b Department of Mathematics, Bar Ilan University, Ramat Gan, Israel
c International University Bremen, Bremen, Germany
d School of Civil and Resource Engineering, The University of Western Australia, Crawley, WA, Australia
e ARC Centre of Excellence for Design in Light Metals, Department of Materials Engineering, Monash University, Clayton, Vic., Australia
f CSIRO Division of Manufacturing and Materials Technology, Clayton, Vic., Australia
g School of Mechanical Engineering, The University of Western Australia, Crawley, WA, Australia
h Department of Mechanics and Mathematics, Moscow State University, Moscow, Russia
Аннотация:
В данной статье рассматриваются расположения в пространстве правильных многогранников – платоновых тел, обладающие некоторыми интересными и необычными свойствами. А именно, многогранники располагаются в виде заклиненного слоя, в том смысле, что не один из многогранников не может быть извлечен из слоя, если остальные неподвижны. На плоскости аналогичная ситуация невозможна. Первые примеры такого типа были достаточно сложны и строились необычным способом (Г. Гальперин). Представленные в настоящей статье примеры были получены в результате прикладных исследований авторов, Г. Хора и М. Гликмана и не были описаны в математических публикациях. Полная версия статьи содержится в http://arxiv.org/abs/0812.5089.
Статья поступила: 7 ноября 2006 г.; исправленный вариант 7 января 2007 г.
Образец цитирования:
A. J. Kanel-Belov, A. V. Dyskin, Y. Estrin, E. Pasternak, I. A. Ivanov-Pogodaev, “Interlocking of convex polyhedra: towards a geometric theory of fragmented solids”, Mosc. Math. J., 10:2 (2010), 337–342
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mmj383 https://www.mathnet.ru/rus/mmj/v10/i2/p337
|
|