Аннотация:
Изучение кластерных алгебр было мотивировано желанием создать алгебраический формализм для понимания полной положительности и канонических базисов в полупростых алгебраических группах. В этой работе мы определяем и вычисляем канонический базис для специального семейства кластерных алгебр ранга 2.
Статья поступила:9 июля 2003 г.; исправленный вариант 14 декабря 2003 г.
Образец цитирования:
R. Sherman, A. V. Zelevinskii, “Positivity and canonical bases in rank 2 cluster algebras of finite and affine types”, Mosc. Math. J., 4:4 (2004), 947–974
\RBibitem{SheZel04}
\by R.~Sherman, A.~V.~Zelevinskii
\paper Positivity and canonical bases in rank~2 cluster algebras of finite and affine types
\jour Mosc. Math.~J.
\yr 2004
\vol 4
\issue 4
\pages 947--974
\mathnet{http://mi.mathnet.ru/mmj178}
\crossref{https://doi.org/10.17323/1609-4514-2004-4-4-947-974}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2124174}
\zmath{https://zbmath.org/?q=an:1103.16018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208595000008}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mmj178
https://www.mathnet.ru/rus/mmj/v4/i4/p947
Эта публикация цитируется в следующих 86 статьяx:
Calvin Pfeifer, “A generic classification of locally free representations of affine GLS algebras”, Journal of Algebra, 664 (2025), 414
Véronique Bazier‐Matte, Nathan Chapelier‐Laget, Guillaume Douville, Kaveh Mousavand, Hugh Thomas, Emine Yildirim, “ABHY Associahedra and Newton polytopes of FF‐polynomials for cluster algebras of simply laced finite type”, Journal of London Math Soc, 109:1 (2024)
Liqian Bai, Xueqing Chen, Ming Ding, Fan Xu, “A generalized quantum cluster algebra of Kronecker type”, era, 32:1 (2024), 670
Lang Mou, “Locally free Caldero–Chapoton functions via reflections”, Math. Z., 307:1 (2024)
Greg Muller, Bach Nguyen, Kurt Trampel, Milen Yakimov, “Poisson geometry and Azumaya loci of cluster algebras”, Advances in Mathematics, 453 (2024), 109822
Nick Early, Jian-Rong Li, “Tropical geometry, quantum affine algebras, and scattering amplitudes”, J. Phys. A: Math. Theor., 57:49 (2024), 495201
Dylan Rupel, Salvatore Stella, “Dominance Regions for Rank Two Cluster Algebras”, Ann. Comb., 27:4 (2023), 873
Ming Ding, Fan Xu, Xueqing Chen, “Recursive formulas for the Kronecker quantum cluster algebra with principal coefficients”, Sci. China Math., 66:9 (2023), 1933
Ding M., Xu F., Chen X., “Atomic Bases of Quantum Cluster Algebras of Type (a)Over-Tilde(2N-1,1)”, J. Algebra, 590 (2022), 1–25
Andrey Yu. Glubokov, Igor V. Nikolaev, “K-theory of Jones polynomials”, Journal of Geometry and Physics, 182 (2022), 104678
Véronique Bazier-Matte, Guillaume Douville, Alexander Garver, Rebecca Patrias, Hugh Thomas, Emine Y{\i}ld{\i}r{\i}m, “Leading Terms of SL3 Web Invariants”, International Mathematics Research Notices, 2022:3 (2022), 1714
Gyoda Ya., “Relation Between F-Vectors and D-Vectors in Cluster Algebras of Finite Type Or Rank 2”, Ann. Comb., 25:3 (2021), 573–594
Arkani-Hamed N., Lam T., Spradlin M., “Non-Perturbative Geometries For Planar N=4 Sym Amplitudes”, J. High Energy Phys., 2021, no. 3, 65
Jiakang Bao, Sebastián Franco, Yang-Hui He, Edward Hirst, Gregg Musiker, Yan Xiao, “Quiver mutations, Seiberg duality, and machine learning”, Phys. Rev. D, 102:8 (2020)
Pavel Galashin, Pavlo Pylyavskyy, “Quivers with subadditive labelings: classification and integrability”, Math. Z., 295:3-4 (2020), 945
Gunawan E., Musiker G., Vogel H., “Cluster Algebraic Interpretation of Infinite Friezes”, Eur. J. Comb., 81 (2019), 22–57
Bai L. Chen X. Ding M. Xu F., “Cluster Multiplication Theorem in the Quantum Cluster Algebra of Type a(2)((2)) and the Triangular Basis”, J. Algebra, 533 (2019), 106–141
Fu Ch., Geng Sh., “on Indecomposable Tau-Rigid Modules For Cluster-Tilted Algebras of Tame Type”, J. Algebra, 531 (2019), 249–282
Nobe A., “Generators of Rank 2 Cluster Algebras of Affine Types Via Linearization of Seed Mutations”, J. Math. Phys., 60:7 (2019), 072702