Математическое моделирование
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор
Правила для авторов

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Матем. моделирование:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Математическое моделирование, 1994, том 6, номер 2, страницы 34–46 (Mi mm1835)  

Вычислительные методы и алгоритмы

Многосеточный метод решения двумерных эллиптических краевых задач

В. В. Денисенко

Институт вычислительного моделирования СО РАН
Аннотация: Исходная задача с несимметричным оператором переформулирована как задача об отыскании минимума квадратичного функционала энергии. Построена вариационно-разностная схема. Доказаны теоремы аппроксимации и сходимости. Используется многосеточный метод Р. П. Федоренко. Экономичность алгоритма продемонстрирована на примере решения задачи электропроводности ионосферной плазмы.
Поступила в редакцию: 02.07.1991
Реферативные базы данных:
Образец цитирования: В. В. Денисенко, “Многосеточный метод решения двумерных эллиптических краевых задач”, Матем. моделирование, 6:2 (1994), 34–46
Цитирование в формате AMSBIB
\RBibitem{Den94}
\by В.~В.~Денисенко
\paper Многосеточный метод решения двумерных эллиптических краевых задач
\jour Матем. моделирование
\yr 1994
\vol 6
\issue 2
\pages 34--46
\mathnet{http://mi.mathnet.ru/mm1835}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1297053}
\zmath{https://zbmath.org/?q=an:1075.78543}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/mm1835
  • https://www.mathnet.ru/rus/mm/v6/i2/p34
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024