|
Математическое моделирование, 1997, том 9, номер 4, страницы 39–52
(Mi mm1402)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Математические модели и вычислительный эксперимент
Моделирование квантовым методом Монте-Карло фазового перехода в двумерной джозефсоновской системе
А. И. Белоусов, Ю. Е. Лозовик Институт спектроскопии РАН
Аннотация:
Квантовый метод Монте-Карло (с использованием интегралов по путям) применяется для изучения свойств двумерной квантовой джозефсоновскои системы контактов и ряда других систем, описываемых $2+1$ XY моделью. Выбор оптимального алгоритма расчета позволил детально иследовать фазовую диаграмму системы в плоскости температура – безразмерный квантовый параметр $q$ ($q=\hbar/\sqrt{JC}$), где $J$ – джозефсоновская константа связи, $С$ – емкость гранулы). Развит вариационный метод расчета модуля завихренности – величины, наиболее полно отражающей характер топологического фазового перехода. Анализ корреляционной функции фаз, модулей спиральности и завихренности приводит к выводу, что граница упорядоченной фазы есть линия топологических переходов Костерлица–Таулеса.
Поступила в редакцию: 07.05.1996
Образец цитирования:
А. И. Белоусов, Ю. Е. Лозовик, “Моделирование квантовым методом Монте-Карло фазового перехода в двумерной джозефсоновской системе”, Матем. моделирование, 9:4 (1997), 39–52
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mm1402 https://www.mathnet.ru/rus/mm/v9/i4/p39
|
Статистика просмотров: |
Страница аннотации: | 823 | PDF полного текста: | 341 | Первая страница: | 1 |
|