Аннотация:
The effect of preliminary high-power ultrasonic treatment of Nafion® alcohol solutions on the properties of membranes and characteristics of membrane-electrode assemblies of membrane-based fuel cells has been explored. The changes in the microstructure of Nafion® membranes upon ultrasonic treatment of their solutions lead to an increase in their proton conductivity, gas permeability and the membrane-based fuel cells power by almost 10%.
Образец цитирования:
E. Yu. Safronova, O. V. Korchagin, V. A. Bogdanovskaya, A. B. Yaroslavtsev, “Effect of ultrasonic treatment of Nafion® solution on the performance of fuel cells”, Mendeleev Commun., 32:2 (2022), 224–225
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mendc620
https://www.mathnet.ru/rus/mendc/v32/i2/p224
Эта публикация цитируется в следующих 5 статьяx:
Liliana P. T. Carneiro, Alexandra M. F. R. Pinto, Dzmitry Ivanou, Adélio M. Mendes, M. Goreti F. Sales, “Portable and Autonomous PEDOT-Modified Flexible Paper-Based Methanol Fuel Cell Sensing Platform Applied to L1CAM Recombinant Protein Detection”, ACS Appl. Polym. Mater., 6:6 (2024), 3207
N. A. Faddeev, A. B. Kuriganova, I. N. Leontyev, N. V. Smirnova, “Investigation of the carbon monoxide resistance of platinum catalysts prepared via pulse alternating current technique”, Mendeleev Commun., 34:3 (2024), 442–445
P. G. Mingalev, V. D. Dudnik, G. V. Lisichkin, “Oxidative Degradation of Polyaromatic Hydrocarbons under Ultrasonic Impact”, Moscow Univ. Chem. Bull., 79:6 (2024), 429
Lin Chen, Yongwen Ren, Faying Fan, Tianyuan Wu, Zhe Wang, Yaojian Zhang, Jingwen Zhao, Guanglei Cui, “Artificial frameworks towards ion-channel construction in proton exchange membranes”, Journal of Power Sources, 574 (2023), 233081
N. A. Slesarenko, A. V. Chernyak, I. A. Avilova, V. P. Tarasov, V. I. Volkov, “Mobility of Li+, Na+, and Cs+ cations in Nafion membrane, as studied by NMR techniques”, Mendeleev Commun., 33:2 (2023), 215–217