Аннотация:
Fluorinated phthalonitrile monomers exhibit low activity in polymerization initiated by a wide range of curing agents of various nature. On the contrary, the use of fluorinated diamines as hardeners for common non-fluorinated phthalonitrile monomer allows one to obtain thermosets with high glass transition temperature (Tg>426°C) and improved thermal oxidation stability (T5%=520°C in air).
Образец цитирования:
V. E. Terekhov, O. S. Morozov, E. S. Afanaseva, B. A. Bulgakov, A. V. Babkin, A. V. Kepman, V. V. Avdeev, “Fluorinated phthalonitrile resins with improved thermal oxidative stability”, Mendeleev Commun., 30:5 (2020), 671–673
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mendc1289
https://www.mathnet.ru/rus/mendc/v30/i5/p671
Эта публикация цитируется в следующих 11 статьяx:
Marina Sergeevna Lobanova, Alexandr Vladimirovich Babkin, Alexey Valeryevich Kepman, Victor Vasil'evich Avdeev, Oleg Sergeevich Morozov, Boris Anatol'evich Bulgakov, “Effect of Phosphate-Bridged Monomer on Thermal Oxidative Behavior of Phthalonitrile Thermosets”, Polymers, 16:16 (2024), 2239
M.S. Lobanova, V.V. Aleshkevich, M.Yu. Yablokova, O.S. Morozov, A.V. Babkin, A.V. Kepman, V.V. Avdeev, B.A. Bulgakov, “Kinetics of the oxidative aging of phthalonitrile resins and their effects on the mechanical properties of thermosets”, Thermochimica Acta, 724 (2023), 179492
Zi-long Wang, Xin Zhou, Kun Zheng, Ying Guo, Jun Wang, Wen-bin Liu, Heng Zhou, Tong Zhao, “Simultaneously enhancing heat resistance and mechanical performance for phthalonitrile through in-situ formation of inorganic protective layer derived from low melting point oxide”, Composites Part A: Applied Science and Manufacturing, 174 (2023), 107740
M.V. Yakovlev, M.E. Kuchevskaia, V.E. Terekhov, O.S. Morozov, A.V. Babkin, A.V. Kepman, V.V. Avdeev, B.A. Bulgakov, “Easy processable tris-phthalonitrile based resins and carbon fabric reinforced composites fabricated by vacuum infusion”, Materials Today Communications, 33 (2022), 104738
Qiusha Li, Shuai Zhang, Jiajia Ye, Xiaobo Liu, “Multiple catalytic polymerization of phthalonitrile resin bearing benzoxazine moiety: Greatly reduced curing temperature”, European Polymer Journal, 180 (2022), 111472
Daria Poliakova, Oleg Morozov, Yakov Lipatov, Alexander Babkin, Alexey Kepman, Viktor Avdeev, Boris Bulgakov, “Fast-Processable Non-Flammable Phthalonitrile-Modified Novolac/Carbon and Glass Fiber Composites”, Polymers, 14:22 (2022), 4975
Daria I. Poliakova, Oleg S. Morozov, Sergey S. Nechausov, Ekaterina A. Afanaseva, Boris A. Bulgakov, Alexander V. Babkin, Alexey V. Kepman, Viktor V. Avdeev, “Fast curing phthalonitrile modified novolac resin: Synthesis, curing study and preparation of carbon and glass fibric composites”, Reactive and Functional Polymers, 181 (2022), 105450
Sergey Nechausov, Anastasya Aleksanova, Oleg Morozov, Alexandr Babkin, Alexey Kepman, Victor Avdeev, Boris Bulgakov, “Heat-Resistant Phthalonitrile-Based Resins for 3D Printing via Vat Photopolymerization”, ACS Appl. Polym. Mater., 4:10 (2022), 6958
B. A. Bulgakov, O. S. Morozov, I. A. Timoshkin, A. V. Babkin, A. V. Kepman, “Bisphthalonitrile-based Thermosets as Heat-resistant Matrices for Fiber Reinforced Plastics”, Polym. Sci. Ser. C, 63:1 (2021), 64