aAlexander Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russian Federation bInstitute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo, Japan cDepartment of Materials Science and Engineering, Technion – Israel Institute of Technology, Haifa, Israel dLaboratoire de Modelisation et Simulations Moleculaires, Universite Louis Pasteur, Strasbourg, France
Аннотация:
The synthesis of the desired chemical compound is the main task of synthetic organic chemistry. The predictions of reaction conditions and some important quantitative characteristics of chemical reactions as yield and reaction rate can substantially help in the development of optimal synthetic routes and assessment of synthesis cost. Theoretical assessment of these parameters can be performed with the help of modern machine-learning approaches, which use available experimental data to develop predictive models called quantitative or qualitative structure–reactivity relationship (QSRR) modelling. In the article, we review the state-of-the-art in the QSRR area and give our opinion on emerging trends in this field.
Образец цитирования:
T. I. Madzhidov, A. Rakhimbekova, V. A. Afonina, T. R. Gimadiev, R. N. Mukhametgaliev, R. I. Nugmanov, I. I. Baskin, A. Varnek, “Machine learning modelling of chemical reaction characteristics: yesterday, today, tomorrow”, Mendeleev Commun., 31:6 (2021), 769–780
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mendc1040
https://www.mathnet.ru/rus/mendc/v31/i6/p769
Эта публикация цитируется в следующих 11 статьяx:
Mikhail Andronov, Natalia Andronova, Michael Wand, Jürgen Schmidhuber, Djork-Arné Clevert, Lecture Notes in Computer Science, 14894, AI in Drug Discovery, 2025, 21
Ana P. Carvalho, Angela Martins, Filomena Martins, Nelson Nunes, Rúben Elvas‐Leitão, Catalysis for a Sustainable Environment, 2024, 577
Yu Zhang, Min Xia, Hongwei Song, Minghui Yang, “Predicting Rate Constants of Alkane Cracking Reactions Using Machine Learning”, J. Phys. Chem. A, 128:12 (2024), 2383
Fedor V. Ryzhkov, Yuliya E. Ryzhkova, Michail N. Elinson, “Python tools for structural tasks in chemistry”, Mol Divers, 2024
Vaneet Saini, Harsh Singh, “Predicting the ET(30) parameter of organic solvents via machine learning”, Chemical Physics Letters, 826 (2023), 140672
Dmitry Zankov, Timur Madzhidov, Igor Baskin, Alexandre Varnek, “Conjugated quantitative structure‐property relationship models: Prediction of kinetic characteristics linked by the Arrhenius equation”, Molecular Informatics, 42:10 (2023)
Zhengkai Tu, Thijs Stuyver, Connor W. Coley, “Predictive chemistry: machine learning for reaction deployment, reaction development, and reaction discovery”, Chem. Sci., 14:2 (2023), 226
Yu Zhang, Jinhui Yu, Hongwei Song, Minghui Yang, “Structure-Based Reaction Descriptors for Predicting Rate Constants by Machine Learning: Application to Hydrogen Abstraction from Alkanes by CH3/H/O Radicals”, J. Chem. Inf. Model., 63:16 (2023), 5097
A. Yu. Tolbin, “An efficient method of searching for correlations between unlimited datasets to provide forecasting models”, Mendeleev Commun., 33:3 (2023), 419–421
Abdullah Alsalhi, Bader Huwaimel, Ahmed Alobaida, Mohammad S. Alzahrani, Sameer Alshehri, Kumar Venkatesan, Hossam Kotb, Mohammed A.S. Abourehab, “Theoretical investigations on the liquid-phase molecular separation in isolation and purification of pharmaceutical molecules from aqueous solutions via polymeric membranes”, Environmental Technology & Innovation, 28 (2022), 102925
Amir Taldaev, Roman P. Terekhov, Elizaveta V. Melnik, Maria V. Belova, Sergey V. Kozin, Andrey A. Nedorubov, Tatyana Ya. Pomerantseva, Galina V. Ramenskaya, “Insights into the Cardiotoxic Effects of Veratrum Lobelianum Alkaloids: Pilot Study”, Toxins, 14:7 (2022), 490