|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
Семейство негрубых циклов в системе двух связанных генераторов с запаздыванием
А. А. Кащенко Ярославский государственный университет им. П.Г. Демидова,
ул. Советская, 14, г. Ярославль, 150003, Россия
Аннотация:
В данной работе рассматривается нелокальная динамика модели двух связанных генераторов с запаздывающей обратной связью. Эта модель имеет вид системы двух дифференциальных уравнений с запаздыванием. Функция обратной связи является нелинейной, финитной и гладкой. Главным предположением в задаче является то, что связь между генераторами достаточно малая. Асимптотическими методами исследуется существование релаксационных периодических решений данной системы. Для этого в фазовом пространстве исходной системы выделяется специальное множество. Затем находится асимптотика решений данной системы с начальными условиями из этого множества. С помощью этой асимптотики строится специальное отображение, описывающее в главном динамику исходной задачи. Доказывается, что все решения данного отображения являются негрубыми циклами периода два. В результате удается сформулировать условия на параметр связи, при выполнении которых исходная система имеет двупараметрическое семейство негрубых неоднородных релаксационных периодических асимптотических по невязке решений.
Ключевые слова:
большой параметр, релаксационное колебание, периодическое решение, асимптотика, запаздывание.
Поступила в редакцию: 15.06.2017
Образец цитирования:
А. А. Кащенко, “Семейство негрубых циклов в системе двух связанных генераторов с запаздыванием”, Модел. и анализ информ. систем, 24:5 (2017), 649–654
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mais589 https://www.mathnet.ru/rus/mais/v24/i5/p649
|
Статистика просмотров: |
Страница аннотации: | 156 | PDF полного текста: | 69 | Список литературы: | 38 |
|