Lobachevskii Journal of Mathematics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Lobachevskii J. Math.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Lobachevskii Journal of Mathematics, 2004, том 14, страницы 17–24 (Mi ljm87)  

Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)

The continuity of multiplication for two topologies associated with a Semifinite trace on von Neumann algebra

A. M. Bikchentaev

N. G. Chebotarev Research Institute of Mathematics and Mechanics, Kazan State University
Список литературы:
Аннотация: Let $\mathcal M$ be a semifinite von Neumann algebra in a Hilbert space $\mathcal H$ and $\tau$ be a normal faithful semifinite trace on $\mathcal M$. Let $\mathcal M^{\mathrm{pr}}$ denote the set of all projections in $\mathcal M$, $e$ denote the unit of $\mathcal M$, and ${\|\cdot\|}$ denote the $C^*$-norm on $\mathcal M$.
The set of all $\tau$-measurable operators $\widetilde{\mathcal M}$ with sum and product defined as the respective closures of the usual sum and product, is a *-algebra. The sets
$$ U(\varepsilon,\delta)=\{x\in\widetilde{\mathcal M}:\|xp\|\le\varepsilon\text{ and }\tau(e-p)\le\delta\text{ for some }p\in\mathcal M^{\mathrm{pr}}\}, \quad \varepsilon>0, \enskip \delta>0, $$
form a base at 0 for a metrizable vector topology $t_\tau$ on $\widetilde{\mathcal M}$, called the measure topology. Equipped with this topology, $\widetilde{\mathcal M}$ is a complete topological *-algebra. We will write $x_i\buildrel{\tau}\over\longrightarrow x$ in case a net $\{x_i\}_{i\in I}\subset\widetilde{\mathcal M}$ converges to $x\in\widetilde{\mathcal M}$ for the measure topology on $\widetilde{\mathcal M}$. By definition, a net $\{x_i\}_{i\in I}\subset\widetilde{\mathcal M}$ converges $\tau$-locally to $x\in\widetilde{\mathcal M}$ (notation: $x_i\buildrel{\tau l}\over\longrightarrow x$) if $x_ip\buildrel{\tau}\over\longrightarrow xp$ for all $p\in\mathcal M^{\mathrm{pr}}$, $\tau(p)<\infty$; and a net $\{x_i\}_{i\in I}\subset\widetilde{\mathcal M}$ converges weak $\tau$-locally to $x\in\widetilde{\mathcal M}$ (notation: $x_i\buildrel{w\tau l}\over\longrightarrow x$) if $px_ip\buildrel{\tau}\over\longrightarrow pxp$ for all $p\in\mathcal M^{\mathrm{pr}}$, $\tau(p)<\infty$.
Theorem 1. {\it Let $x_i,x\in\widetilde{\mathcal M}$.
1. If $x_i\buildrel{\tau l}\over\longrightarrow x $, then $x_iy\buildrel{\tau l}\over\longrightarrow xy$ and $yx_i\buildrel{\tau l}\over\longrightarrow yx$ for every fixed $y\in\widetilde{\mathcal M}$.
2. If $x_i \buildrel{w\tau l}\over\longrightarrow x$, then $x_iy\buildrel{w\tau l}\over\longrightarrow xy$ and $yx_i\buildrel{w\tau l}\over\longrightarrow yx$ for every fixed $y\in\widetilde{\mathcal M}$.}
Theorem 2. {\it If $\{x_i\}_{i\in I}\subset\widetilde{\mathcal M}$ is bounded in measure and if $x_i\buildrel{\tau l}\over\longrightarrow x\in\widetilde{\mathcal M}$, then $x_iy\buildrel{\tau}\over\longrightarrow xy$ for all $\tau$-compact $y\in\widetilde{\mathcal M}$.}
Theorem 3. {\it Let $x,y,x_i,y_i\in\widetilde{\mathcal M}$ and let a set $\{x_i\}_{i\in I}$ be bounded in measure. If $x_i\buildrel{\tau l}\over\longrightarrow x$ and $y_i\buildrel{\tau l}\over\longrightarrow y$, then $x_iy_i\buildrel{\tau l}\over\longrightarrow xy$.}
If $\mathcal M$ is abelian, then the weak $\tau$-local and $\tau$-local convergencies on $\widetilde{\mathcal M}$ coincides with the familiar convergence locally in measure. If $\tau(e)=\infty$, then the boundedness condition cannot be omitted in Theorem 2.
If $\mathcal M$ is $\mathcal B(\mathcal H)$ with standard trace, then Theorem 2 for sequences is a “Basic lemma”of the theory of projection methods: If $y$ is compact and $x_n\to x$ strongly, then $x_ny\to xy$ uniformly, i.e. $\|x_ny-xy\|\to 0$ as $n\to\infty$. Theorem 3 means that the mapping
$$ (x,y)\mapsto xy\colon(\mathcal B(\mathcal H)_1\times\mathcal B(\mathcal H)\to\mathcal B(\mathcal H)) $$
is strong-operator continuous ($\mathcal B(\mathcal H)_1$ denotes the unit ball of $\mathcal B(\mathcal H)$).
Ключевые слова: Hilbert space, von Neumann algebra, noncom-mutative integration, measurable operator, semifinite trace, convergence with respect to measure, compact operator, topological algebra.
Представлено: Д. Х. Муштари
Поступило: 08.01.2004
Реферативные базы данных:
Язык публикации: английский
Образец цитирования: A. M. Bikchentaev, “The continuity of multiplication for two topologies associated with a Semifinite trace on von Neumann algebra”, Lobachevskii J. Math., 14 (2004), 17–24
Цитирование в формате AMSBIB
\RBibitem{Bik04}
\by A.~M.~Bikchentaev
\paper The continuity of multiplication for two topologies associated with a~Semifinite trace on von Neumann algebra
\jour Lobachevskii J. Math.
\yr 2004
\vol 14
\pages 17--24
\mathnet{http://mi.mathnet.ru/ljm87}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2034258}
\zmath{https://zbmath.org/?q=an:1077.46055}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/ljm87
  • https://www.mathnet.ru/rus/ljm/v14/p17
  • Эта публикация цитируется в следующих 5 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Lobachevskii Journal of Mathematics
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024