|
Эта публикация цитируется в 7 научных статьях (всего в 7 статьях)
Seiberg–Witten equations and non-commutative spectral curves in Liouville theory
L. Chekhovab, B. Eynardc, S. Ribaultcd a School of Mathematics, Loughborough University, LE11 3TU Leicestershire, United Kingdom
b Department of Theoretical Physics, Steklov Mathematical Institute, Moscow, 119991 Russia
c Institut de Physique Théorique, IPhT, CNRS, URA 2306, F-91191 Gif-sur-Yvette, France
d Laboratoire Charles Coulomb UMR 5221 CNRS-UM2, Université Montpellier 2, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France
Аннотация:
We propose that there exist generalized Seiberg–Witten equations in the Liouville conformal field theory, which allow the computation of correlation functions from the resolution of certain Ward identities. These identities involve a multivalued spin one chiral field, which is built from the energy-momentum tensor. We solve the Ward identities perturbatively in an expansion around the heavy asymptotic limit, and check that the first two terms of the Liouville three-point function agree with the known result of Dorn, Otto, Zamolodchikov, and Zamolodchikov. We argue that such calculations can be interpreted in terms of the geometry of non-commutative spectral curves.
Принята в печать: 01.01.2013
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jmp8
|
Статистика просмотров: |
Страница аннотации: | 71 |
|