|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
On certain geometric properties in Banach spaces of vector-valued functions
Jan-David Hardtke University of Leipzig, 10 Augustusplatz, Leipzig, 04109, Germany
Аннотация:
We consider a certain type of geometric properties of Banach spaces, which includes, for instance, octahedrality, almost squareness, lushness and the Daugavet property. For this type of properties, we obtain a general reduction theorem, which, roughly speaking, states the following: if the property in question is stable under certain nite absolute sums (for example, nite $l^p$-sums), then it is also stable under the formation of corresponding Köthe{Bochner spaces (for example, $L^p$-Bochner spaces). From this general theorem, we obtain as corollaries a number of new results as well as some alternative proofs of already known results concerning octahedral and almost square spaces and their relatives, diameter two properties, lush spaces and other classes.
Ключевые слова и фразы:
absolute sums, Köothe–Bochner spaces, Lebesgue–Bochner spaces, octahedral spaces, almost square spaces, diameter two properties, lush spaces, generalised lush spaces, Daugavet property.
Поступила в редакцию: 09.05.2019 Исправленный вариант: 06.06.2019
Образец цитирования:
Jan-David Hardtke, “On certain geometric properties in Banach spaces of vector-valued functions”, Журн. матем. физ., анал., геом., 16:2 (2020), 119–137
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jmag771 https://www.mathnet.ru/rus/jmag/v16/i2/p119
|
Статистика просмотров: |
Страница аннотации: | 61 | PDF полного текста: | 38 |
|