|
Biharmonic Hopf hypersurfaces of complex Euclidean space and odd dimensional sphere
Najma Mosadegh, Esmaiel Abedi Depertment of Mathematics Azarbaijan Shahid Madani University, Tabriz 53751 71379, Iran
Аннотация:
In this paper, biharmonic Hopf hypersurfaces in the complex Euclidean space $C^{n+1}$ and in the odd dimensional sphere $S^{2n+1}$ are considered. We prove that the biharmonic Hopf hypersurfaces in $C^{n+1}$ are minimal. Also, we determine that the Weingarten operator $A$ of a biharmonic pseudo-Hopf hypersurface in the unit sphere $S^{2n+1}$ has exactly two distinct principal curvatures at each point if the gradient of the mean curvature belongs to $D^\perp$, and thus is an open part of the Clifford hypersurface $S^{n_1} (1/\sqrt{2})\times S^{n_2} (1/\sqrt{2})$, where $n_1 + n_2 =2n$.
Ключевые слова и фразы:
biharmonic hypersurfaces, Hopf hypersurfaces, Chen's conjecture.
Поступила в редакцию: 09.01.2019 Исправленный вариант: 28.11.2019
Образец цитирования:
Najma Mosadegh, Esmaiel Abedi, “Biharmonic Hopf hypersurfaces of complex Euclidean space and odd dimensional sphere”, Журн. матем. физ., анал., геом., 16:2 (2020), 161–173
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jmag751 https://www.mathnet.ru/rus/jmag/v16/i2/p161
|
Статистика просмотров: |
Страница аннотации: | 61 | PDF полного текста: | 41 | Список литературы: | 13 |
|