|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Quasi-stability method in study of asymptotic behavior of dynamical systems
Igor Chueshov, Tamara Fastovska, Iryna Ryzhkova V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61077, Ukraine
Аннотация:
In this survey, we have made an attempt to present the contemporary ideas and methods of investigation of qualitative dynamics of infinite dimensional dissipative systems. Essential concepts such as dissipativity and asymptotic smoothness of dynamical systems, global and fractal attractors, determining functionals, regularity of asymptotic dynamics are presented. We place the emphasis on the quasi-stability method developed by I. Chueshov and I. Lasiecka. The method is based on an appropriate decomposition of the difference of the trajectories into a stable and a compact parts. The existence of this decomposition has a lot of important consequences: asymptotic smoothness, existence and finite dimensionality of attractors, existence of a finite set of determining functionals, and (under some additional conditions) existence of a fractal exponential attractor. The rest of the paper shows the application of the abstract theory to specific problems. The main attention is paid to the demonstration of the scope of the quasi-stability method.
Ключевые слова и фразы:
infinite dimensional dynamical systems, asymptotic behavior, global attractors, fractal exponential attractors, determining functionals, finite fractal dimension, quasi-stability, stability, PDEs.
Поступила в редакцию: 09.11.2017 Исправленный вариант: 09.07.2019
Образец цитирования:
Igor Chueshov, Tamara Fastovska, Iryna Ryzhkova, “Quasi-stability method in study of asymptotic behavior of dynamical systems”, Журн. матем. физ., анал., геом., 15:4 (2019), 448–501
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jmag739 https://www.mathnet.ru/rus/jmag/v15/i4/p448
|
Статистика просмотров: |
Страница аннотации: | 87 | PDF полного текста: | 68 | Список литературы: | 19 |
|