|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
Ricci solitons and gradient Ricci solitons on $N(k)$-paracontact manifolds
Uday Chand Dea, Krishanu Mandalb a Department of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road, Kol-700019, West Bengal, India
b Department of Mathematics, K.K. Das College, GRH-17, Baishnabghata-Patuli, Kol-700084, West Bengal, India
Аннотация:
An $\eta$-Einstein paracontact manifold $M$ admits a Ricci soliton $(g,\xi)$ if and only if $M$ is a $K$-paracontact Einstein manifold provided one of the associated scalars $\alpha$ or $\beta$ is constant. Also we prove the non-existence of Ricci soliton in an $N(k)$-paracontact metric manifold $M$ whose potential vector field is the Reeb vector field $\xi$. Moreover, if the metric $g$ of an $N(k)$-paracontact metric manifold $M^{2n+1}$ is a gradient Ricci soliton, then either the manifold is locally isometric to a product of a flat $(n+1)$-dimensional manifold and an $n$-dimensional manifold of negative constant curvature equal to $-4$, or $M^{2n+1}$ is an Einstein manifold. Finally, an illustrative example is given.
Ключевые слова и фразы:
paracontact manifold, $N(k)$-paracontact manifold, Ricci soliton, gradient Ricci soliton, Einstein manifold.
Поступила в редакцию: 14.02.2018 Исправленный вариант: 01.06.2018
Образец цитирования:
Uday Chand De, Krishanu Mandal, “Ricci solitons and gradient Ricci solitons on $N(k)$-paracontact manifolds”, Журн. матем. физ., анал., геом., 15:3 (2019), 307–320
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jmag729 https://www.mathnet.ru/rus/jmag/v15/i3/p307
|
|