|
Singularly perturbed spectral problems in a thin cylinder with Fourier conditions on its bases
Andrey Piatnitskiab, Volodymyr Rybalkoc a The Arctic University of Norway, Campus in Narvik, P.O. Box 385, N-8505 Narvik, Norway
b Institute for Information Transmission Problems RAS, Bolshoi Karetnyi, 19, Moscow, 127051, Russia
c B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, 47 Nauky Ave., Kharkiv, 61103, Ukraine
Аннотация:
The paper deals with the bottom of the spectrum of a singularly perturbed second order elliptic operator defined in a thin cylinder and having locally periodic coefficients in the longitudinal direction. We impose a homogeneous Neumann boundary condition on the lateral surface of the cylinder and a generic homogeneous Fourier condition at its bases. We then show that the asymptotic behavior of the principal eigenpair can be characterized in terms of the limit one-dimensional problem for the effective Hamilton–Jacobi equation with the effective boundary conditions. In order to construct boundary layer correctors we study a Steklov type spectral problem in a semi-infinite cylinder (these results are of independent interest). Under a structure assumption on the effective problem leading to localization (in certain sense) of eigenfunctions inside the cylinder we prove a two-term asymptotic formula for the first and higher order eigenvalues.
Ключевые слова и фразы:
singularly perturbed operators, homogenization problems, eigenvalues, eigenfunctions, Fourier boundary conditions.
Поступила в редакцию: 01.04.2019
Образец цитирования:
Andrey Piatnitski, Volodymyr Rybalko, “Singularly perturbed spectral problems in a thin cylinder with Fourier conditions on its bases”, Журн. матем. физ., анал., геом., 15:2 (2019), 256–277
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jmag726 https://www.mathnet.ru/rus/jmag/v15/i2/p256
|
|