|
Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)
Construction of KdV flow I. $\tau$-Function via Weyl function
S. Kotani Osaka University, 2-13-2 Yurinokidai Sanda 669-1324, Japan
Аннотация:
Sato introduced the $\tau$-function to describe solutions to a wide class of completely integrable differential equations. Later Segal–Wilson represented it in terms of the relevant integral operators on Hardy space of the unit disc. This paper gives another representation of the $\tau$-functions by the Weyl functions for 1d Schrödinger operators with real valued potentials, which will make it possible to extend the class of initial data for the KdV equation to more general one.
Ключевые слова и фразы:
KdV equation, Sato theory, Schrödinger operator.
Поступила в редакцию: 06.02.2018
Образец цитирования:
S. Kotani, “Construction of KdV flow I. $\tau$-Function via Weyl function”, Журн. матем. физ., анал., геом., 14:3 (2018), 297–335
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jmag702 https://www.mathnet.ru/rus/jmag/v14/i3/p297
|
Статистика просмотров: |
Страница аннотации: | 173 | PDF полного текста: | 40 | Список литературы: | 29 |
|