|
Эта публикация цитируется в 14 научных статьях (всего в 14 статьях)
Non-differentiable functions defined in terms of classical representations of real numbers
S. O. Serbenyuk Institute of Mathematics of the National Academy of Sciences of Ukraine, 3 Tereschenkivska St., Kyiv, 01004, Ukraine
Аннотация:
The present paper is devoted to the functions from a certain subclass of non-differentiable functions. The arguments and values of the considered functions are represented by the $s$-adic representation or the nega-$s$-adic representation of real numbers. The technique of modeling these functions is the simplest as compared with the well-known techniques of modeling non-differentiable functions. In other words, the values of these functions are obtained from the $s$-adic or nega-$s$-adic representation of the argument by a certain change of digits or combinations of digits. Integral, fractal and other properties of the functions are described.
Ключевые слова и фразы:
nowhere differentiable function, $s$-adic representation, nega-$s$-adic representation, non-monotonic function, Hausdorff–Besicovitch dimension.
Поступила в редакцию: 09.05.2017 Исправленный вариант: 17.07.2017
Образец цитирования:
S. O. Serbenyuk, “Non-differentiable functions defined in terms of classical representations of real numbers”, Журн. матем. физ., анал., геом., 14:2 (2018), 197–213
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jmag697 https://www.mathnet.ru/rus/jmag/v14/i2/p197
|
Статистика просмотров: |
Страница аннотации: | 181 | PDF полного текста: | 40 | Список литературы: | 28 |
|