|
Журнал математической физики, анализа, геометрии, 2007, том 3, номер 3, страницы 342–364
(Mi jmag69)
|
|
|
|
Homogenization of a linear nonstationary Navier–Stokes equations system with a time-variant domain with a fine-grained boundary
N. K. Radyakin Mathematical Division, B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Lenin Ave., Kharkiv, 61103, Ukraine
Аннотация:
The problem of distortion of viscous incompressible fluid with a great number of solid particles with given velocities is considered. The diameters of particles and the distance between them tend to zero, and the number of particles tends to infinity. The asymptotic behavior of the solutions of the linear system of Navier-Stokes equations is considered. In a homogenized model there appears an additional term containing the strength tensor of a single particle.
Ключевые слова и фразы:
Navier–Stokes equations, solid body dynamics, homogenization, suspension.
Поступила в редакцию: 05.05.2006
Образец цитирования:
N. K. Radyakin, “Homogenization of a linear nonstationary Navier–Stokes equations system with a time-variant domain with a fine-grained boundary”, Журн. матем. физ., анал., геом., 3:3 (2007), 342–364
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jmag69 https://www.mathnet.ru/rus/jmag/v3/i3/p342
|
|